Green Al: Do Deep Learning Frameworks Have Different Costs?

Stefanos Georgiou*
Queen’s University
stefanos.georgiou@queensu.ca

Federica Sarro
University College London
f.sarro@ucl.ac.uk

ABSTRACT

The use of Artificial Intelligence (a1), and more specifically of Deep
Learning (pL), in modern software systems, is nowadays widespread
and continues to grow. At the same time, its usage is energy de-
manding and contributes to the increased CO, emissions, and has
a great financial cost as well. Even though there are many studies
that examine the capabilities of DL, only a few focus on its green
aspects, such as energy consumption.

This paper aims at raising awareness of the costs incurred when
using different pL frameworks. To this end, we perform a thor-
ough empirical study to measure and compare the energy con-
sumption and run-time performance of six different pr models
written in the two most popular DL frameworks, namely PyTorcH
and TENsoRFLow. We use a well-known benchmark of pL models,
DEEPLEARNINGEXAMPLES, created by NVIDIA, to compare both the
training and inference costs of DL. Finally, we manually investigate
the functions of these frameworks that took most of the time to
execute in our experiments.

The results of our empirical study reveal that there is a statisti-
cally significant difference between the cost incurred by the two
DL frameworks in 94% of the cases studied. While TENSORFLowW
achieves significantly better energy and run-time performance than
PyTorcH, and with large effect sizes in 100% of the cases for the
training phase, PYToRCH instead exhibits significantly better en-
ergy and run-time performance than TENsorRFLow in the inference
phase for 66% of the cases, always, with large effect sizes. Such a
large difference in performance costs does not, however, seem to
affect the accuracy of the models produced, as both frameworks
achieve comparable scores under the same configurations. Our man-
ual analysis, of the documentation and source code of the functions
examined, reveals that such a difference in performance costs is
under-documented, in these frameworks. This suggests that devel-
opers need to improve the documentation of their 1 frameworks,
the source code of the functions used in these frameworks, as well
as to enhance existing DL algorithms.

“The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Maria Kechagia®
University College London
m.kechagia@ucl.ac.uk

Tushar Sharma
Dalhousie Uninversity

tushar@dal.ca

Ying Zou
Queen’s University
ying.zou@queensu.ca

CCS CONCEPTS

« Hardware — Power and energy; - Software and its engi-
neering — Software libraries and repositories; - Computing
methodologies — Machine learning;

KEYWORDS

Energy consumption, run-time performance, deep learning, Ap1s

ACM Reference Format:

Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying
Zou. 2022. Green Al: Do Deep Learning Frameworks Have Different Costs?.
In 44th International Conference on Software Engineering (ICSE °22), May
21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Deep learning (pL) is a field of machine learning (ML) that has
recently gained significant attention from researchers and prac-
titioners. Along with the increase of computational power and
availability of data, the use of deep learning has contributed to the
improvement of several applications (e.g., in the medical, financial,
transportation sectors) that, for instance, use speech and image
recognition, machine translation, and natural language processing
(~ep). The advancement in these areas would have not been possible
without the great advancement in DL.

While the research community has spent a significant effort
towards improving the accuracy of DL approaches, it has often
overlooked their costs. As recently reported by Schwartz et al. [76],
DL has been assisting in an increase in the computational costs of the
state-of-the-art A1 research as big as 3000,000x between 2012 and
2018. Such a dramatically increasing trend in resource consumption,
dubbed as RED A1, is not just often prohibitively expensive for
researchers and practitioners, but also environmentally unfriendly.

This has motivated the field of Green Software Engineering
(sE) research, which aims to decrease software environmental foot-
prints and supports, inter alia, GREEN AI [58]. Optimizing resource
utilization used by expensive bL models, without compromising
their accuracy, is important to combat such an environmentally
unfriendly and prohibitively expensive trend [78].

This paper presents an in-depth empirical analysis to investigate
and compare the energy consumption and run-time performance
of DL frameworks, in particular, PYTorcH and TENsSorRFLow. To
the best of our knowledge, this is the first such empirical study.
We select six large models for pi from different A1 domains (rec-
ommender systems, NLP, and computer vision) extracted from a
popular benchmark i.e., DEEPLEARNINGEXAMPLES [5]. We use the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

benchmark to perform training and inference experiments involv-
ing DL algorithms (e.g., Transformer, cNN, GNMT), and measure
the consumed energy and run-time performance. Furthermore, to
investigate issues that may affect the energy consumption and run-
time performance of DL models, we examine whether particular
functions provided within the PYTorcH and TENSORFLOW APIS
can affect the efficiency of bL models. Finally, we discuss potential
suggestions for improving the energy consumption and run-time
performance of pL models without compromising accuracy.

Our findings show that TENSORFLow outperforms PYTORCH re-
garding energy consumption by 1.7x and run-time performance by
2.1x when training models belonging to the recommender systems
and computer vision categories of our benchmark. By contrast,
PyToRCH is 2.1x more energy-efficient and 2.4x faster than TENSOR-
FLow when training models of the NLP category. In the inference
of the models, TENsorRFLOW is 1.4x faster and 1.7x more energy-
efficient than PyTorcH only for the recommender systems and
RESNET-50 models. Regarding accuracy, both frameworks achieve
a similar score under the same configurations. Therefore, under our
configurations, TENSORFLOW is overall more energy and run-time
efficient compared to PYTorcH in the training phase, but less effi-
cient in the inference phase. Finally, we manually investigated the
functions of the frameworks examined that took most of the time to
execute in our experiments. We argue that the energy consumption
and run-time performance of such functions could be improved, in
the future, by both improving the documentation and source code
of the pr frameworks, and optimizing existing core DL algorithms.
The paper makes the following contributions.

(1) A publicly available framework, PRENGDL (it stands for Per-
formance and Energy of Deep Learning) [6, 8].

(2) An empirical study to compare DL frameworks (Py-
TorcH [69] and TENsoRFLow [10]) regarding energy and
run-time efficiency using six large models for DL.

(3) An analysis of the issues that hinder the energy consump-
tion and run-time performance of bL models, for PYTorcH
and TENsORFLoW, as well as a discussion on potential rec-
ommendations to mitigate the identified issues, in the future,
without sacrificing accuracy.

2 BACKGROUND

Deep Learning. p1, a subfield of ML, allows computational mod-
els to compose and arrange in multiple processing layers to learn
representations of data with multiple levels of abstraction [33, 53].
DL techniques are extensively used to solve a variety of detection,
prediction, and classification problems belonging to various do-
mains. These domains include image recognition [47, 80], speech
recognition [75], and NLP [43]. As in traditional supervised ML, DL
models consist of two processes: training and inference. Training
refers to the process of learning weights of the internal nodes of
a DL model using training data, to learn patterns from the data.
Inference refers to the process of using a trained bL model to make
a prediction on unseen data.

Each layer in a pL model transforms the sequence of data coming
from the previous layer or learns the representation of the input
data in the form of weights of the nodes. A well-designed DL model
is capable of inferring features during training and can learn to

S. Georgiou et al.

classify samples based on these inferred features. For example, a
Convolution Neural Network (cNN) mimics the alternating layers of
simple and complex cells of the visual cortex in animals [29]. cNN-
based DL models have been proven effective for image classification
and detection [47, 80] and face recognition [52, 68]. Similarly, a
Recurrent Neural Network (RNN) and a fully-connected Neural
Network are among the various layers that are used to compose a
DL model; their arrangement within a pL model is often influenced
by the problem at hand [50].

The wealth of available software-specific artifacts coming from
abundant open-source repositories and the advancements in the
ML applications, beyond audio and images, have paved the way for
a rapid growth of ML techniques for software engineering applica-
tions. To this end, the repetitive and predictable nature of the source
code revealed by the statistical characteristics of the source code has
been compared with the properties of the natural text [28, 38]. Also,
researchers have extensively applied ML techniques for clone de-
tection [85, 86], de-obfuscation [82], language migration [62], code
summarization [41], auto-correction [34, 73], auto-completion [30],
code generation [56, 63, 88], and program comprehension [11].

Energy and Run-time Efficiency. A programming task’s (DL
model here) energy consumption is the amount of energy, measured
in Joules, required by a computer system to accomplish the task;
the energy consumption is calculated by the formula E = P X
T [51], where P denotes the power consumption, in Watts, and T
the total amount of time (run-time performance), in seconds, required
to execute a task. Although in the physical sense energy cannot be
consumed, we will use the term energy consumption to refer to the
conversion of electrical energy by 1T equipment into thermal energy
dissipated to the environment. For example, we say that a program A
consumes 30 Joules and needs ten seconds to accomplish a task and
program B consumes 20 Joules and needs 20 seconds to accomplish
the same task as program A. Then, program A is more run-time
efficient, while program B is more energy efficient. Additionally,
as computer systems change and become more complex with an
evolving memory hierarchy, having processors of multiple cores
and distinct power states, power requirements begin to vary. Even
though there are several studies related to computer systems and
energy efficiency, it is still unclear how certain design decisions
can alter the energy consumption of computer programs [16], or
what trade-offs exist [58, 65].

3 EXPERIMENTAL SETUP

3.1 Research Questions

RQ1: Which is the most energy and run-time efficient pL
framework for the models examined?—With RQ1, we exam-
ine the energy consumption and run-time performance of PYTORCH
and TENsorFLow for the models used in our study. Knowing this
information, we can inform the DL community about the most
efficient frameworks for the models under evaluation.

RQ2: How accurate are the pr frameworks for the mod-
els under examination?—With RQ2, we examine the accuracy
in the results produced by the prL frameworks for the models of
our study, i.e., we wish to see whether the selected frameworks
sacrifice accuracy over energy or run-time efficiency, under our
configurations. Knowing this information, we can inform the pr

Green-Al: Do Different Deep Learning Frameworks...

community about the most accurate as well as energy and run-time
efficient frameworks for a given model.

RQ3: What are the least energy and run-time efficient Ar1s
of DL frameworks for the models under examination?—With
RQ3, we investigate the reasons that make pL frameworks less en-
ergy and run-time efficient. In particular, we identify APis in DL
frameworks that are energy-hungry and run-time inefficient. Locat-
ing these Ap1s, we will be able to make suggestions for improving
those AP1s, in the future, and, thereby, the pr frameworks.

3.2 Benchmark

Benchmark. To achieve high accuracy, pr algorithms must learn
differentiating patterns with the help of large data sets. We consid-
ered the following criteria to select an appropriate benchmark for
our study.

(1) The benchmark should be public, popular (having a signifi-
cant number of stars, which is a proxy of popularity [12]; we
consider benchmarks with more than 100 stars on GiTHUB)
and maintained (having recent commits on GITHUB, i.e., at
most one year old). We opt for data sets that are interesting
to the community and active.

(2) The benchmark should have been used in previously pub-
lished research. Its successful use in other empirical studies
proves that such a benchmark can be used for evaluating pL.

(3) The benchmark should consist of models from different cate-
gories (e.g., recommender systems, NLP, and computer vision).
We want to measure the energy consumption and run-time
performance of various models.

(4) The benchmark should contain models already available for
both PyTorcH and TENsoRFLow. Ensuring the availability of
the same models in both frameworks is necessary to compare
the frameworks’ energy and run-time performance.

After searching the related work (articles published in ICSE and
FSE 2020—2021)1 and GrTHuB, for benchmarks that can be used in
the evaluation of DL, we found that DEEPLEARINGEXAMPLES [5] sat-
isfies our criteria listed above. DEEPLEARINGEXAMPLES is developed
by NVIDIA, a leading hardware manufacturing company.

In particular, we chose DEEPLEARINGEXAMPLES (commit
dfed8d4) because it is publicly available on GiTHUB, popular (with
more than 6K stars on GiTHUB, and continuously maintained by
NvIDIA. We preferred to rely on algorithm implementations made
publicly available by practitioners to avoid introducing our own
implementation biases. Furthermore, DEEPLEARINGEXAMPLES has
been used in previous research [40, 54, 61, 83], and the implemen-
tations of the DL algorithms used were developed and tested based
on the original research papers proposing them. Additionally, we
opted for DEEPLEARINGEXAMPLES since this benchmark offers dif-
ferent models and pL algorithms, for instance, models for Recom-
mender Systems, Natural Language Processing (NLP), and Computer
Vision. Finally, DEEPLEARINGEXAMPLES provides models written
in both PyTorcH and TENsoRFLow. To the best of our knowledge,
DEEPLEARNINGEXAMPLES is the only repository that offers the im-
plementations of a same DL algorithm in three different frameworks

!We chose ICSE and FSE since these two conferences are the most prestigious in
software engineering. We checked the publications from the last two years since the
DL field is emerging and evolves rapidly.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

(i.e., TENsorFLow, PYTorcH, and MXNET) for various tasks. How-
ever, we only focused on TENsorFLow and PYTorcH, because only
one algorithm (i.e., RESNET-50) was implemented in MXNET.

Models. DEEPLEARINGEXAMPLES provides 46 state-of-the-art
models that one can to train and deploy on GPUs via DOCKER images.
From these 46 models, we selected and successfully configured six
models listed in Table 1. We selected the six models using the
following criteria.

(1) These models are implemented both in PYTorcH and TEN-
sorFLow, while other models are not. We ensured, through
manual analysis, that the models found in DEEPLEARNINGEX-
AMPLES, for PYTorcH and TENsoRFLOW, are identical to each
other in terms of functionalities and configurations.

(2) The models can be successfully executed on our execution
environment. For this, we tested each model to make sure
that they can run on our available hardware.

(3) The models are unique. For instance, for computer vision,
we removed different versions of the REsNET, leaving only
RESNET-50 in our data set. We performed this check as we
wanted to compare the energy consumption and run-time
performance of different models.

Table 1 lists the models obtained according to our criteria. We
have one model that belongs to the category of the recommender
systems and three models that belong to the NLP category. Addi-
tionally, from the computer vision category, we kept three unique
models out of five, because the other three models shared a consid-
erable overlap.

We needed to configure the DEEPLEARINGEXAMPLES benchmark
to the requirements of our study, so that we can perform fair com-
parisons between PyTorcH and TENSORFLOW [6, 8]. We present the
steps we followed. First, we checked whether all the configurations
of each model are alike for the two DL frameworks. Second, we exe-
cuted each model with its default configurations. Third, we changed
some of the default configuration (e.g., number of GpUs, epochs,
batches, seeds), because many times our GPU was running out of
memory or running for days without giving us a result. However, in
some cases, even after reducing all the available configurations and
running a model for days, we did not get any result (e.g., BERT [27]).
Therefore, we excluded such models from our data set.

Algorithms. In the data set we used in our study, we include
six DL algorithms implemented both in PyTorcH and TENsORFLOW.
In particular, the examined models use NcF, Tranformer-XL, GNMT,
RESNET-50, Mask R-CNN, and ssp. We briefly describe these algo-
rithms in the forth column of Table 1.

3.3 Evaluation Measures

For RQ1, we wish to measure the energy consumption and run-time
performance for different models written in the two pL frameworks
considered in this study. We measured both energy consumption
and run-time performance for the training and inference phases
of L. To calculate the run-time performance, we used the time
UNIx tool [9]. We considered the real time produced by the time
tool. To fetch the energy consumption measurements, we used
the PERF [2] and nvidia-smi [4] tools. At its heart, PERF uses the
Running Average Power Limit (RAPL [64]) framework to report
the energy consumption of a running model. RAPL uses hardware

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

S. Georgiou et al.

Table 1: Selected models from DEEPLEARNINGEXAMPLES.

Category Model Data set

Description

Recommender

Systems (Rs) NCF ml-20m

It filters and provides feedback based on the NcF specifications according
to He et al. [37].

Transformer-xL WikiText-103

Natural Language

Processing (NLP)
GNMT WMT16 EN-DE

It enables capturing longer-term dependency and resolves the context
fragmentation problem, built based on the study of Dai et al. [23].

It uses Google’s Neural Machine Translation System (GNMT) to translate
English to German, built based on the study of Wu et al. [87].

ResNet-50 Coco 2014

It is an image classification algorithm with low complexity developed
according to the study of He et al. [36].

It is a convolution-based neural network for the model of object instance

Computer Vision Mask rR-CNN Coco 2017
(ev)

SSD Coco 2017

segmentation, built according to the study of He et al. [35].
It detects objects in images, using a single deep neural network follow-
ing the study of Liu et al. [57].

performance counters to estimate the energy consumption of the
CPU cores, package (PKG), i.e., core and uncore components of the
processor, and main memory (RAM). We used RAPL since it is a well-
established utility that has been used in related work [24, 60, 71].
Furthermore, RAPL’s accuracy has been validated by various stud-
ies [26, 45, 46, 66] and it offers a high sample interval (a single
reading per one millisecond). To collect the energy measurements
from the GpU, we used the NVIDIA-SMI, a command-line tool devel-
oped and maintained by NvIDIA. To our knowledge, NvIDIA-sMI is
the only available tool to fetch energy measurements from a Gpu.

For RQ2, we argue about the accuracy of models that are effi-
cient regarding energy consumption and run-time performance.
Therefore, we measured the accuracy of the different models used in
our study, including hit rate, perplexity, BLEU, Top-5 error rate, av-
erage precision, and precision. The evaluation measures are model-
dependent. The selected measures are used by the authors who
introduced the models used in our study [23, 35-37, 57, 87]. Hit rate
aims to show the success rate of recommender systems, in suggest-
ing the top items from a top-N list [25]; it is desired to have a high
hit rate. Perplexity is an exponentiation of the entropy; lower values
of this measure suggest more accurate models [42]. BLEU (BiLingual
Evaluation Understudy) measures the difference between human
and machine-translation output; a high BLEU score indicates a better
model [67]. Top-5 error rate shows the fraction of test images for
which the correct label is not among the five labels; low values of
this measure are desired [48]. The last two measures are precision
and average precision. Both measures are desired to be high.

For RQ3, we wish to investigate whether there exist functions
called from the PyTorcH or TENsorRFLow frameworks into the
models under examination that consume considerable energy and
impact run-time performance. To achieve this, we used a profiling
tool called cProfile [7]. The tool produces run-time execution
measurements of an application’s function and library calls. Specif-
ically, cProfile offers information such as the number of times
each function is invoked by an application under test, the total time
taken by each function, and the total time taken per call. Along with
cProfile, we utilized gprof2dot [3], a command line tool to plot
dot graphs from cProfile. By using gprof2dot, we were able to
point out the exact path of the functions invoked by a model. This

tool also helped us to analyze the source code of those functions
that were energy hungry or run-time inefficient.

3.4 Execution Framework

To automate the evaluation of the energy consumption and run-time
performance of the selected models, we implemented a framework
called PRENGDL [6, 8] to support the reproducibility of our study.
PRENGDL offers the following capabilities:

e installs all necessary packages and modules of our experi-
ments through an Ansible script;

e sets up the test-bed configurations with the parameters used
in our experiments to reproduce our results for each model;

o checks whether the corresponding GpuU is compatible with
the experiments’ setup and ensures all the necessary depen-
dencies are installed to get all the measurements;

o sets the power governor to the Performance mode to avoid
reducing the performance of our experiments [18, 79];

e can execute all experiments multiple times and report the
progress of the experiments;

e compiles a report on the executed models with mean values.

3.5 Experimental Settings

All experiments run on a server equipped with two 6th generation
Intel(R) Xeon(R) Gold 6154 cpU running on 3.00 GHz as basic fre-
quency totaling into 72 logical cores and 96 GB of main memory.
We used Python 3.7 and shell scripts for our experiments, and
the latest available docker containers (PYTorcH and TENSORFLOW
release 20.06-py3), available from the Nvip1A GPU Cloud Reposi-
tory; it is updated on monthly basis and includes all the required
dependencies needed for one to run the models.

Before running our experiments, we stopped all the unnecessary
background processes (as suggested in other similar studies [19,
20, 39]) to let our system reach a stable condition (i.e., where the
energy consumption is stable). Then, we started executing models to
obtain their energy consumption and run-time performance. After
the end of each model’s execution, we let the computer remain idle
for one minute (using the sleep command). In this manner, we
were able to avoid tail power states [13] and allow the system to
reach a stable condition again (idle energy consumption) before

http://files.grouplens.org/datasets/movielens/
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/
http://www.statmt.org/wmt16/translation-model.html
https://image-net.org/challenges/LSVRC/2014/2014-downloads.php
https://www.kaggle.com/awsaf49/coco-2017-dataset
https://www.kaggle.com/awsaf49/coco-2017-dataset

Green-Al: Do Different Deep Learning Frameworks...

executing the next model [21]. Finally, to reduce any noise in our
measurements, we executed the above steps ten times for each
model. It took us & 135 hours to collect the energy consumption
and run-time performance measurements for all experiments.

4 RESULTS
4.1 Answer to RQ1

Our goal is to find which framework is more energy and run-time
efficient for the models under examination. Table 2 and Table 3
present the energy consumption (in Joules) and run-time perfor-
mance (in seconds) measured during the training and inference
phases of our experiments, respectively. We use the abbreviations
PKG for the core and non-core components of the processor, RAM
for the main memory, and GpU for the graphic card. To compare
our results we use the following equation:

P/Pmin (1)
Where p is the measurement and p;, is the minimum value of
energy consumption or run-time performance for each model. If
X = p/Pmin, the model giving p i, is x times more energy or run-
time efficient than p’s implementation. Moreover, we report the
mean values of the energy consumption of PkG (core and uncored
components of a processor), RAM, and GPU for a particular model.
The median values are also available in our replication package [8]
and online repository [6]. The highlighted cells of the tables show
which framework has the most energy or run-time efficient results
for the corresponding model. Additionally, to assess for statistically
significant differences and their magnitude, we report the results
of the Wilcoxon Signed Rank Test [17] (with a confidence level of
0.05 and a Bonferroni correction for multiple hypothesis testing),
and the non-parametric Vargha and Delaney’s A1 statistic [81],
respectively.?

Table 2 summarizes the results from the training phase of the
models. We observe that TENsoRFLow outperforms PYTorcH for
training an NCF model by being 2.1x faster and 1.5x more energy ef-
ficient. By contrast, PYTorcH scored better for the Transformer-xr
and GNMT models compared to TENsoRFLow. In particular, PYTorcH
trained a Transformer-xL and GNMT model 1.7x and 3.1x faster com-
pared to its counterpart. PYTORCH consumed 1.5x fewer energy to
train a Transformer-xL model viz-a-viz TENSORFLOW. Moreover, to
train a GNMT model, PYToRcH needed 2.8x less energy compared to
TeNnsorFLow. For training computer vision models, TENSORFLOW
was much more energy and run-time efficient than PyTorcH. Specif-
ically, TENSORFLOW’s run-time performance is 1.2x, 1.2x, and 2.7x
more efficient for RESNET-50, Mask R-CNN, and ssD, respectively.
Similarly, for RESNET-50, TENSORFLOW was 1.2x more energy effi-
cient than PYTorcH’s implementation. Likewise, for Mask R-CNN,
TENSORFLOW was 1.1x less energy demanding than PyYTorcH’s im-
plementation. For training an ssp model, TENSORFLOW was again
3.1x more energy efficient than PYTorcH’s implementation. The

2Given a performance measure M, the Ay statistic measures the probability, where
implementing a model with a framework A yields better results than implementing it
with a framework B. If the two implementations are equivalent, we will get Ay =0.5.
If the first implementation performs better than the second one, we can have the
following cases: Alz is considered small for 0.6 < A]Z < 0.7, medium for 0.7 <
A]Z < 0.8, and large for Alz > 0.8.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

statistical tests (see Table 2) confirm that the results in the train-
ing phase are statistically different with a large effect size in 24
out 24 cases (100%), with TENSORFLoOW significantly outperforming
PYTORCH in 16 out of 24 cases (76%).

Table 3 shows the results for the inference phase. From the
collected results, we observe that TENSORFLOW achieves the best
results for an NCF model. Particularly, TENsORFLOW needed 1.4x
less time and 1.7x less energy for inference, compared to PYTorcH.
Again, similarly to the training process, PYTORCH took less time
and consumed less energy to train models under the category of
NLP. Specifically, PyTorcH took 2.4x and 3x less time to train a
Transformer-xtr and GNMT model, while it also used 2.1x and 2.7x
less energy to train a Transformer-xL and GNMT model, respectively.
For the computer vision category, TENSOrRFLow only performed
better than PYTorcH for a RESNET-50 model. In particular, TEN-
SORFLOW’s implementation was 1.2x and 1.7x more run-time and
energy efficient than PYTorcH’s, respectively. To infer a Mask Rr-
cNN and ssp model, PYToRcH was 1.3x and 1.7x faster, while also
being 1.1x and 1.5x more energy efficient than TENSORFLOW’s im-
plementations, correspondingly. The statistical tests confirm that
the results achieved by the two frameworks in the inference phase
statistically differ, with a large effect size for 21 out of 24 cases
(87%), and are in favor of PYTORCH in 16 out of these 21 cases (76%).

Answer to RQ1: We find that TENsorRFLOW is the least costly
framework for training recommender systems and computer
vision models, while PYToRcH is the cheapest for training NLP
models. When it comes to model inference, TENSORFLOW is
better for the recommender systems and for the RESNET-50
computer vision model, while PYTorcH outperforms TENSOR-
Frow for the remaining models. Overall, we observe that the
cheapest framework for the training phase is TENSORFLOW,
while PyTorcH achieves the least costly inference.

4.2 Answer to RQ2

Our goal is to find the energy and run-time performance trade-offs
against the selected models’ accuracy. Figure 1 depicts the accuracy
of each model selected in our study, along with the corresponding
run-time performance and energy consumption. To identify the
run-time, energy (combined energy of PG, RaM, and GPU), and
accuracy trade-offs, we utilize the combined results of training
and inference summarized in Table 2 and Table 3, along with the
accuracy results illustrated in Figure 1.

We use the combined results of training and inference, because
obtaining the final accuracy involves both the training and infer-
ence steps. Additionally, we compare and discuss our results by
using the equation 1, as we did for RQ1. We use the basic configu-
rations for executing the experiments, since we are interested in
measuring energy and run-time performance, and we do not tune
the configurations such that to achieve the best accuracy. To gather
accuracy results, we run only once our techniques since according
to the related work [74], using the same and basic configurations,
the models will be deterministic, and accuracy will remain the same.

Figure 1 presents the trade-offs among the three aspects i.e.,
energy consumption (y-axis), run-time performance (size of cir-
cle), and accuracy (color of the circle). For example, TENSORFLOW’s

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

S. Georgiou et al.

Table 2: RQ1. Mean values for the energy consumption (in Joules) and run-time performance (in seconds) of training. The
Wilcoxon statistical significance test results (p-value) and effect size (A;2) are also reported.

Model PKG Energy RrAM Energy GPU Energy Run-Time

PyTorcH TENSORFLOW p-value (Alz) PyTorcH TENSORFLOW p-value (Alz) PyTorcH TENSORFLOW p-value (Alz) PyTorcH TENSORFLOW p-value (Alz)
NCF 327,561 280,428 < 0.001(1) 51,537 29,300 < 0.001(1) 173,505 85,127 0.001(0.9) 5,901 2,710 < 0.001(1)
Transformer-xr. = 144,781 201,979 < 0.001(1) 15,151 24,791 < 0.001(1) = 113,754 187,333 < 0.001(1) 1,431 2,495 < 0.001(1)
GNMT 195,975 604,856 < 0.001(1) 25,164 75,908 <0.001(1) 196,911 521,321 < 0.001(1) 2,515 7,805 < 0.001(1)
ResNet-50 368,245 258,787 < 0.001(1) 39,506 31,752 < 0.001(1) 236,041 216,157 < 0.001(1) 3,472 2,826 < 0.001(1)
Mask R-CNN 255,395 198,027 <0.001(1) 27,897 22,739 <0.001(1) 176,012 146,886 < 0.001(1) 2,438 2,028 < 0.001(1)
SSD 590,050 185,356 < 0.001(1) 63,835 22,678 < 0.001(1) 412,664 120,646 < 0.001(1) 5,667 2,072 < 0.001(1)

Table 3: RQ1. Mean values for the energy consumption (in Joules) and run-time performance (in seconds) of inference. The
Wilcoxon statistical significance test results (p-value) and effect size (A;2) are also reported.

Model PKG Energy RAM Energy GPU Energy Run-Time

PyTorcH TENSORFLOW p-value (A;z) PyTorcH TENsORFLOw p-value (Ajz) PyTorcH TENsORFLOW p-value (Ajz) PyTorcH TENSORFLOW p-value (Apz)
NCF 16,697 11,275 0.48(0.6) 1,780 1,231 0.48(0.6) 5,049 1,829 < 0.001(1) 159 113 0.48(0.6)
Transformer-xL 21,789 42,037 < 0.001(1) 2,333 4,657 < 0.001(1) 14,968 38,769 < 0.001(1) 208 509 < 0.001(1)
GNMT 3,205 9,638 < 0.001(1) 346 992 < 0.001(1) 1,465 3,406 < 0.001(1) 31 96 < 0.001(1)
ResNet-50 88,653 36,531 < 0.001(1) 9,333 5,356 <0.001(1) 53,168 45,812 < 0.001(1) 776 603 < 0.001(1)
Mask R-CNN 103,321 106,301 < 0.001(0.9) 11,120 13,529 < 0.001(1) 70,858 81,806 < 0.001(1) 963 1,337 < 0.001(1)
SSD 42,906 67,035 < 0.001(1) 4,554 8,048 <0.001(1) = 17,122 26,893 < 0.001(1) 408 717 < 0.001(1)

implementation of GNMT not only consumes higher energy than 4.3 Answer to RQ3

PyTorcH’s implementation, but also takes longer to execute (and,
thus, it has a larger circle compared to PyTorcH). However, TENSOR-
FLow’s GNMT shows slightly better accuracy than the PYTorcH's
implementation. Therefore, the circles have the same color.

For the NcF model, TENSORFLOW not only outperforms PyTorcH
in terms of energy consumption and run-time performance, but
also in terms of accuracy, having 1.1x better hit rate. For the
Transformer-xL model, we observe that PYTORCH is 1.2x more accu-
rate. However, for the GNMT model, PYTORCH is 1x more inaccurate
than TENsorFLow. For the computer vision models, we find that
TeNsorFLOW has better accuracy for the RESNET-50 model, since
the top-5 error rate of PYTORCH is 44x higher than TENSORFLOWs.
We also observe for the ssb model that TENsoRFLow has 2x bet-
ter precision compared to PyTorcH. For Mask R-CNN, we obtain
zero results for both frameworks, as the used configurations and
hyper-parameters did not contribute to a visible accuracy.

Answer to RQ2: The collected results suggest that better en-
ergy consumption and run-time performance—in most cases—
yield better accuracy results as well. Overall, we find that
TensorFLow has similar accuracy to PYTorcH, under the
configurations and parameters used in our study.

Table 4: RQ3. Energy and run-time performance tests.

Tuples PyTorcH TENSORFLOW
PKG Energy-Run-Time 0.25 0.88
RAM Energy-Run-Time 0.88 0.94
GPU Energy—-Run-Time 0.42 0.60

Our goal is to identify Aris of the frameworks under examination
that consume a significant amount of energy and are run-time
inefficient. We analyze such functions, which the models invoke,
that contribute more than 1% to the total execution time of the
training and inference of a model (see tables 5, 6, 7, and 8). We
select such a low threshold since any function call with lower
than 1% of execution time might have a negligible impact on the
energy and run-time performance of the training and inference of
a model. The complete profiling of our experiments is available
in our replication package [8] and online repository [6]. Table 5,
Table 6, Table 7, and Table 8 present the collected results for each
model, the corresponding function name, number of calls, the total
execution time (run-time), and the portion, in terms of percentage,
of the total execution time.

To the best of our knowledge, there are no available tools to mea-
sure the energy consumption of a model in terms of milliseconds;
thus, it is challenging for one to collect energy measurements with
a high sampling rate and map them to the energy consumption of
the selected models. Additionally, since the total energy consump-
tion is a function of the power usage multiplied by the total time
spent on a model (see Section 2), we consider that greater total time
taken by a function (of PYTorcH or TENsORFLOW) also increases
energy consumption. Therefore, in Table 5, Table 6, Table 7, and
Table 8, we report only the run time. Furthermore, we perform the
Spearman’s correlation test (since our data does not follow a normal
distribution), and find that PYTorcH and TENSORFLOW’s energy
consumption and run-time performance have, on average, a posi-
tive moderate and very strong monotonic correlation, respectively
(see Table 4). Table 4 presents the results for the correlation test of
each framework and the resources tested. The detailed call-graphs
used, along with the performance measures (in figures), can be
accessed in our replication package [8] and online repository [6].

Green-Al: Do Different Deep Learning Frameworks...

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Table 5: RQ3. PYTORCH training. Function name, number of calls (Ncalls), run-time, cost against the total run-time (%), and
type where m stands for complex calculations, O complex implementation, e large data, ¢ device dependency, and — unknown.

The same symbols apply to Tables 6, 7, 8.

Model Function Name Ncalls Run-Time Cost Type
Torch.autograd.backward 1,551,700 2,348 39% -
Torch.addmm 6,206,856 374 6.2% []
Torch.cat 3,103,434 308 5.1% O
NCF Torch.nn.functional.embedding 6,206,856 234 3.8% .
Torch.nn.functional.dropout 4,655,142 171 2.8% .
Torch.nn.functional.relu 4,655,142 131 2.1% []
TorchTensor.t 6,206,856 66 1% -
Torch.autograd.backward 4,000 950 48.9% -
Transformer-xL Torch.Tensor.item 79,160 376 19.3% -
Torch. Tensor.nonzero 18,628 142 7.3% -
Torch.autograd.backward 27,327 1,218 47.4% -
CNMT Torch. Tensor.sum 54,823 67 2.6%]
Torch. Tensor.mul_ 3,229,116 51 1.9% []
Torch Tensor.add 2,389,992 37 1.4%]
Torch.cuda.synchronize 7,404 2,880 83.6% &
Torch.autograd.backward 7,404 331 9.6% -
ResNet50 Torch.nn.Convad 392,412 61 1.9% "
Torch.Tensor.item 7,524 44 1.2% -
Torch.Tensor.item 37,960 1,013 52.9%
Mask R-CcNN Torch.tensor 48,524 515 26.9% o
Torch.autograd.backward 1,000 54 2.8% -
Torch.Tensor.zero_ 2,706,186 1,143 21.9% ul
Torch.cuda.synchronize 14,786 1,051 20.2% O
SSD Torch. Tensor.add_ 5,411,493 522 10%]
Torch.autograd.backward 14,786 329 6.3% -
Torch.Tensor.mul_ 2,705,655 174 3.3%]

PyTorcH Training. The obtained results for PYTorcH indi-
cate that the functions of Ap1s such as Torch. autograd.backward
and Torch.cuda.synchronize contribute to the most time
taken in training a model (see Table 5). Specifically, we find
that all of our models spend on average 25.6% of their to-
tal execution time on the function run_backward, which is in-
voked by the Torch.autograd.backward ar1, responsible for
computing a tensor’s gradients. We also observe that the
Torch.cuda.synchronize Ap1 can take up to 51.9%, on average,
for training an RESNET-50 or ssb model. The corresponding func-
tion waits for all kernels of all streams for the GpU card to complete.
Apart from the aforementioned functions, we find that a function
called by the Torch.Tensor object—such as t, item, nonzero,
sum, zero_, add_, and mul_—takes up, on average, to 11.1% of
the total execution time. Functions to the object Torch.Tensor,
such as add_, mul_, and sum, are responsible for performing arith-
metic calculations on tensors, while item returns the value of a
tensor, t is responsible to transpose dimensions, and so on. Finally,
for training a recommender system, we observe that functions such
as Torch. addmm (matrices multiplication), Torch. cat (tensors con-
catenation), Torch.nn.functional.embedding (retrieval of word
embeddings using indices), and Torch.nn.functional.relu (ap-
plies a rectified linear function to given elements) contribute to
6.2%, 5.1%, 3.8%, and 2.1% of the total execution time, respectively.

PyToRrcH Inference. In contrast with PYToRCH’s training pro-
cess, for inference, there is not a single ap1, for all our models, that is
responsible for taking the most of the execution time. However, as in
the training process, in RESNET-50, Torch. cuda. synchronize and
Torch.nn.Conv2d functions take up to the most of the inference
time. For NcF, Transformer-xr, RESNET-50, and Mask R-CNN, we
observe that similar functions are invoked in the training process—
except for the Torch.autograd.backward being invoked in the
training only—and contribute to the most of the execution time.

TENsoRFLow Training. When it comes to TENSORFLOW’S
training process, we find that all the models, apart form Mask
R-CNN, use the TensorFlow. Session.run ApI at 90.3%, on average,
of their total training time. The corresponding AP1 is responsible for
running computations and evaluating the tensors. The specific func-
tion that is eventually invoked by TensorFlow. Session.run is the
_pywrap_tensorflow_internal.TF_SessionRun_wrapper. For
Mask R-cNN, we observe that TensorFlow.keras.Model.fit
takes 98.7% of the total execution time to train the model.

TENsoRFLow Inference. TensorFlow.Session.run is found
to take the most of the execution time for model inference, which
is 55.6%, on average. In comparison with the whole model imple-
mentation, we observe that NCF’s inference process is not affected
to a great extend by the TENSorRFLow framework. This possibly
happens because many other libraries are used by the developers in

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

S. Georgiou et al.

Table 6: RQ3. PyTorcH inference. Functions, number of calls (Ncalls), run-time, cost against the total run-time (%), and type.

Model Function Name Nealls Run-Time Cost Type
Torch.addmm 874,240 17 19.1%]
Torch.cat 437,123 15 16.6% ul
NCF Torch.nn.functional.embedding 874,240 8 9.4% .
Torch.nn.functional.relu 655,680 5 6.2%]
Torch.Tensor.t 874,240 2 2.8% -
Torch.sigmoid 218,560 2 2.3% -
Torch.Tensor.item 87,945 69 32.6% -
Torch.Tensor.nonzero 19,544 38 18% -
Transformer-xL Torch.einsum 234,528 15 7.1%]
Torch.cat 175,896 6 2.9% [m]
Torch.Tensor.matmul 390,880 6 2.8% []
Torch.Tensor.to 117 1 3.6% O
GNMT Torch.nn.Istm 7680 1 2.9% n
Torch.Tensor.matmul 7,584 1 1.3%]
Torch.cuda.synchronize 4,650 644 84.5% o
ResNet50 Torch.nn.Convad 246,450 24 3.2% "
Torch.tensor 81,819 578 60.6% O
Torch.nn.Conv2d 380,000 24 2.6%]
Mask R-CNN Torch.Tensor.nonzero 400,000 17 1.8% -
Torch.Tensor.float 1,505,005 16 1.7% .
Torch.Tensor.to 105,312 16 1.7% O
Torch.Tensor.type 9,735,395 14 1.5% -
Torch.max 455,439 6 1.3%)
ssb Torch.nn.Conv2d 10,075 6 1.3% |]
Torch.Tensor.item 465,344 5 1.3% -

Table 7: RQ3. TENsoRFLOw training. Functions, number of calls (Ncalls), run-time, cost against the total run-time (%), and type.

Model Function Name Ncalls Run-Time Cost Type
NCF TensorFlow.Session.run 1,551,702 2,325 69.3% [m]
Transformer-xL TensorFlow.Session.run 4,004 1,447 96.4% m]
GNMT TensorFlow.Session.run 30,718 7,654 95.4% [m]
ResNet50 TensorFlow.Session.run 7,509 2,825 97.8%]
Mask rR-CNN TensorFlow.keras.Model fit 1,004 1,993 98.7% .
SSD TensorFlow.Session.run 20,101 1,920 92.7%]

Table 8: RQ3. TENsorRFLow inference. Functions, call number (Ncalls), run-time, cost against the total run-time (%), and type.

Model Function Name Necalls Run-Time Cost Type
NCF TensorFlow.Session.run 34 4 1.2% O
Transformer-xL TensorFlow.Session.run 1,630 481 96.4% m]
CNMT TensorFlow.Session.run 30 43 31.7% m]
TensorFlow.io.gfile.GFile 8,142,390 16 12.1% m]
ResNet50 TensorFlow.Session.run 5,006 575 97.6% O
Mask R-CNN TensorFlow.Keras.Model.predict 1,559 830 84.6%)
ssb TensorFlow.Session.run 5,007 371 52.5% O
TensorFlow.io.gfile.Glob 1 298 42.2% O

the inference phase, apart from TENSORFLOW, taking up to the most
of the total execution time. Moreover, for Mask R-CNN, we observe
that TensorFlow.keras.Model.predict consumes 84.6% of the

total execution time in inference. We also observe two classes from
TensroFlow.io.gfile, namely GFile (an asynchronous file 1/0
wrapper) and Glob (returns a list of files by using pattern matching).

Green-Al: Do Different Deep Learning Frameworks...

Tasks
1200K

R 5,667

1000K Acc: 0.030

> 800K
e
2 Rt3472
4 Acc: 0.440
§ 600K
S Rt 2,438
[~} Acc: 0.000
& Rt: 5,901
400K Acc:0.089
At:2,515
iy []
Rt 1,431
200K Acc 3170
OK
1200K
RE7.805
Acc: 0.480
1000K
=
2
2 800K
w
2
°
E
& 600K
] RE:2,028 Rt 2,826 .
= Acc: 0.000 Acc: 0.000 ~ _
200K Rt: 2,495

Rt: 2,072 Acc 3.860

RE 2710 Acc: 0.060

Acc:0.098
200K

0K

GNMT
Mask R-CNN
NCF
ResNet-50
sSsD

Transformer-XL

Figure 1: RQ2. Comparison of energy-consumption, run-
time performance (Rt), and accuracy (Acc) between TENSOR-
FLow and PyTorcH. The size of a circle represents the run-
time performance (i.e.,, the bigger the circle, the lower the
run-time) and color represents the value of accuracy met-
ric (i.e., the darker the circle, the higher the accuracy); the
interpretation depends on the metric of the model. Accu-
racy has been computed with Hit Rate (NFc), Perplexity
(Transformer-xr), BLEU (GNMT), Top-5 error rate (RESNET-
50), Avg. Precision (Mask R-cNN) and Precision (ssD).

Although Glob is invoked only a single time, it takes a huge toll on
the inference process of ssp (i.e., 42.2% of the total execution time).
Likewise, GFile calls take 12.1% of the total execution time in the
inference of the GNMT model.

Answer to RQ3: Most of the times, specific ApIs are most
demanding and take the majority of the training and in-
ference time of the models examined. Overall, PYTORCH’s
autograd.backward and TENSORFLOW’s Session.run are
the most performance intensive API calls.

4.4 Discussion

Analysis of Documentation and Source Code. Our results show
that there are functions in the Ap1s of PyYTorcH and TENsORFLOW
that may slow the execution of pL applications and consume more
energy. Therefore, the first two authors of this paper manually in-
vestigated the functions’ documentation and source code (function

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

body) in the PYTorcH and TEnsorFLow frameworks for all the
functions listed in Tables 5, 6, 7, and 8. In case of a disagreement
between the two authors, there was a discussion, between them, to
reach a consensus [6, 8].

Our manual analysis revealed that in the documentation of these
functions there is not any particular information regarding energy
consumption or run-time performance. We also read the source
code of the functions identified and found four types of issues that
could be improved in the future. As it is shown in Tables 5, 6, 7,
and 8, we identified: (1) nine unique functions performing complex
calculations, (2) six unique functions having complex implemen-
tation (e.g., with many control flows), (3) seven unique functions
that can handle large data, and which performance depends on the
data magnitude, and (4) two unique functions which performance
depends on the device characteristics used. We also found six meth-
ods in PYTorcH that we were unable to categorize, because these
methods were either written in another language than Python or
because we lack the knowledge to understand their source code.

Suggestions. Based on our manual analysis, we suggest that
since there is a need for greener pL frameworks [77], extra informa-
tion on energy consumption, run-time performance, and minimum
required configurations should be systematically included in the
documentation of such frameworks, in the future.

pL frameworks could, for instance, include in their documen-
tation new “energy and performance-related text fields” for each
method and special symbols for each method type (e.g., as we do
in the last column of Table 5) to indicate the requirements. For
example, the PYTorcH documentation [1] is currently limited, and
in the future it would be good to include the minimum hardware
requirements, at least.

Developers could also list constraints regarding energy and per-
formance requirements, possible errors, or energy and performance
issues that can happen at run-time, as well as provide default
values to avoid run-time issues. Furthermore, annotations (e.g.,
as @NonNull in Java 8) could be added to the documentation to
warn developers about potential energy/performance inefficiencies,
which could be encountered at run-time. These observations could
be drawn from the testing and evaluation of the energy and perfor-
mance of DL frameworks. Using PRENGDL, we hope that energy and
performance metrics of DL frameworks could be gathered system-
atically. We, however, acknowledge that these suggestions should
be further validated in future work, possibly involving researchers
and practitioners.

For functions that are complex or handle large data, DL re-
searchers may consider to optimize the performance of existing
algorithms themselves, and, then, b1 frameworks can be updated
accordingly. For functions with a complex implementation, the de-
velopers of DL frameworks may consider directly optimize their
existing code by leveraging, for example, the Genetic Improvement
of software [72] (which studies how to automatically modify the
source code to improve software’s non-functional properties).

In the following paragraphs, we summarize the key take-aways
of our study for researchers and practitioners that develop DL frame-
works. Furthermore, we suggest steps that a user of a pL framework
could follow, according to the insights of our study, to write more
efficient programs when using PyTorcH and/or TENSORFLOW.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

Key Take-aways. To summarize, our study offers the following
take-aways to researchers and practitioners that use bt frameworks:

e The study raises awareness on the fact that different pL
frameworks incur different energy and performance costs
for both the training and inference phases. Our results show
that no framework is best for all tasks investigated and, thus,
call for actions to allow users to consider and understand
energy and performance requirements when selecting a DL
framework.

o The proposed approach (PRENGDL) can help future studies in
this domain, by offering a comprehensive and sound method
to automatically measure and compare energy and run-time
performance.

e The deficiencies we found, in the current documentation of
DL frameworks, reveal the need for new green-aware docu-
mentation of DL frameworks.

Steps. To improve efficiency, a user of a DL framework may
consider the following steps: (1) run small experiments first, and
test configurations, before running large-scale experiments, (2) use
profiling approaches on small experiments to estimate resources to
be used for large experiments afterwards, (3) analyze the energy-
accuracy trade-offs to decide whether energy and performance
should be sacrificed over accuracy.

To conclude, we hope that the methodology presented in
this paper, together with its publicly available implementation
(PRENGDL [6, 8]), can aid users to assess DL frameworks’ energy
and run-time performance.

5 THREATS TO VALIDITY

Internal Validity. Due to hardware constraints, we used basic con-
figurations and parameters of the models to facilitate the training
process on our test-bed. The reader should consider that some of
the obtained results may vary significantly based on the used Gpus
or cpu architectures. Using different configurations can impact the
accuracy score, reported in Figure 1. However, our current aim
is to investigate the energy and run-time performance of two pL
frameworks while performing the same models. Therefore, we plan
to examine the impact of different configurations on accuracy in the
future. Also, in Section 4.3, we found that two functions under the
gfile module of PyYTorcH have a heavy toll on the performance
of the framework. This fact could have been caused by our server
system’s slow hard-disk drive. However, for the fair comparisons
of our findings, we calculated correlation scores, in Table 4. We
acknowledge that hardware is not always a limitation, for example
for large companies accessing large computing resources. Thus, we
wish to run our experiments in an industrial setting, in the future,
to show the implications of hardware on our results.

The energy and the run-time performance of an application
under test can be affected by many different factors, such as running
background processes, daemons, and so on. We tried to limit as
much as possible such interference. Having full control over the os’
workload and background operations is hard, because, at any time,
different daemons, for instance, may operate. This could affect
our calculations, too, and the results may vary among different
executions. However, this issue is common in such studies. We also
set one minute of idle time between each execution of our tasks,

S. Georgiou et al.

because we found that this time budget is sufficient for our system
to reach a stable condition. Using another time budget may give
different results.

Finally, our manual analysis, for the functions found in Sec-
tion 4.3, many suffer from human errors. To eliminated this issue,
two validators cross-checked the results and we made our results
publicly available [6, 8].

External Validity. Regarding the generalizability of our find-
ings (Section 4), we admit that our results regard the models and
frameworks selected in our study. However, we argue, that the
benchmarks used are developed from well-known research studies
as mentioned in Section 3. In the future, we wish to execute our
study using other benchmarks to strengthen the generalizability of
our findings and balance the categories of the models used in our
experiments (Table 1). We note that we kept the same version of
the packages and modules used originally in the DEEPLEARNINGEX-
AMPLES repository, since these tasks are extensively tested and
developed on monthly basis according to NvIDIA’s developers [5].
Therefore, under different versions the results may differ slightly.

Reliability. For the reproducibility of our study, we developed
an execution framework, PRENGDL, and we made it publicly avail-
able, as well as the inputs and outputs of our experiments [6, 8].
We also provide a configuration management script to enable the
installation of modules and tools needed to run our tasks.

6 RELATED WORK

Many studies examine the accuracy of pL. However, a few studies
focus on pL’s energy consumption and run-time performance [77].
Researchers have pointed out though that the field of DL is energy
demanding. Thus, DL also contributes to the increased CO, emis-
sions, and has a great financial cost as well [14, 15, 55, 76, 78, 84].

Several research studies introduced practices on how to use tra-
ditional ML efficiently to reduce energy consumption. For instance,
Mclntosh et al. [59] performed an empirical study to examine which
algorithms are less energy demanding to train ML models for An-
droid devices. Their results suggest that j48, smo, and MLP contribute
to more energy efficiency, better accuracy, and show a correlation
to algorithms’ complexity. Moreover, the authors pointed out a
number of factors that can significantly affect the energy consump-
tion of ML for Android devices, such as the data set size and the
number of fields. To suggest changes in Java-based source code for
ML, Kumar et al. [49] introduced jEPO, an Eclipse plugin that can
help in optimizing ML source code regarding data types, operators,
strings, exceptions, objects, and arrays. In addition to the previ-
ously mentioned studies, Kan et al. [44] proposed the Eclass that
makes use of the Dynamic Voltage Frequency Scaling mechanisms
to reduce the energy consumption of a computer, while training a
ML model. The suggested approach increased the average energy
savings by 9.1%.

Furthermore, researchers performed studies to investigate and
suggest changes for popular pL models to make them more efficient.
For instance, Zhang et al. [89] conducted a preliminary study to
find the latency, memory footprint, and energy usage of ALEXNET
and SQUEEZENET implemented using TENsORFLow, TENSORFLOW
Lite, PyYTorcH, MXNET, and CAFFE2. As a result, the authors found
that there is not a single framework that outperforms the others.

Green-Al: Do Different Deep Learning Frameworks...

Wang et al. [84] proposed an approach of dropping unnecessary
computations from cNN models running on FPGAs to reduce energy
consumption. The authors achieved energy savings ranging from
60% to 90%, with an accuracy loss of 1.2% to 2% for RESNET74,
RESNET110, and MOBILENETV2, respectively.

Other researchers proposed guidelines on how to fetch energy
measurements for studies with respect to ML [32]. Specifically, the
study of Garcia-Martin et al. [32] states the limitations of various
approaches used by researchers to estimate the energy consump-
tion of model training and proposes ways to build models that can
estimate the energy consumption on different hardware systems.
Likewise, in the study of Fu et al. [31], the authors developed models
to estimate the energy consumption of machine learning applica-
tions. Similarly, Pathak et al. [70] used system calls to generate
power models for estimating smart-phones’ energy consumption.
Furthermore, Bornholt et al. [13] argued that using only a ML model
is not enough to estimate the energy consumption of applications.

This study. We examined how two of the most popular DL frame-
works (PyTorcH and TENSORFLow) perform for bL models from
different categories. Closer to our study is the preliminary work
by Zhang et al. [89]. Zhang et al. [89] assessed the performance
of running a trained model (i.e., not during the training phase)
with the purpose of assessing the use of different hardware for
two pre-trained models, namely ALEXNET and SQUEEZENET, from
one category (i.e., image classification). By contrast, we measured
the performance during both the training and inference phases
of six different models from three different categories (i.e., recom-
mender system, NLP, and computer vision).? Besides, our empirical
methodology is more robust including, for instance, statistical tests,
effect size, and mitigations for stochastic behavior. Additionally,
we found which pr framework is more energy and run-time ef-
ficient for certain models and investigated the trade-offs of the
frameworks accuracy. Finally, we investigated the reasons behind
the obtained results concerning which functions or libraries are
hurting the performance of the frameworks examined, and we
provided some initial suggestions for pL frameworks’ users and
makers/developers.

7 CONCLUSIONS

High accuracy of DL comes at the cost of high computational cost
and resource utilization. In this study, we studied and compared the
energy consumption and run-time performance of two commonly
used pr. frameworks (PYTorcH and TENSORFLOW). We found that
TENsORFLow performs better for training models of the recom-
mender systems and computer vision categories, and PyYTorcH of
the NLP category. Regarding inference, TENsORFLOW performs bet-
ter than PYTorcH only for the recommender systems and RESNET-
50 categories. Furthermore, we found that better energy consump-
tion and run-time performance—in most cases—yield better accu-
racy results. Overall, TENSORFLOW is more energy and run-time

30ur choice of models is guided by maximizing the number of different categories
and algorithms studied, while using publicly available, actively maintained, and tested
implementations, in two DL frameworks. The models (ALEXNET and SQUEEZENET)
used by Zhang et al. [89] cannot be used in our study, because SQUEEZENET is not
implemented for TENsORFLOW and ALEXNET provides only a pre-trained model. For
our study, we need access to the source code to train the models and take measurement
during this phase. However, we could not locate the training source code for ALEXNET
and SQUEEZENET.

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

efficient compared to PYToRcH in the training phase, but less effi-
cient for the inference phase. We also identified specific Ap1s and
functions (from PyTorcH and TENSORFLOW) that are most resource-
hungry and take the majority of the training and inference time.

Our results can have several implications for researchers and
practitioners:

e pL frameworks show a significant model-sensitive differ-
ence in their run-time performance and energy consumption.
Therefore, pL developers may choose the most appropriate
framework for the model at hand, while keeping accuracy,
run-time performance, and energy consumption optimal.

e The training phase of DL frameworks is more expensive than
the inference one, thus, resulting in a higher footprint impact.
Consequently, DL users should consider appropriate steps
when using DL models with large data.

e Our manual analysis of the source code and documentation
of DL frameworks reveals that the current documentation
needs improvement [22], since it lacks, for example, informa-
tion about the minimum hardware requirements regarding
energy consumption and run-time performance. Therefore,
users are left with no indication on how to choose a pL
framework with regards to these aspects. These results raise
the awareness of the need for greener software for users, DL
library makers/developers, and researchers.

e Our manual code analysis and profiling identifies the most
expensive APIs. These findings can guide both researchers
and pr library makers/developers into the optimization of
the energy and performance of DL source code, which could
be attempted both manually or automatically by using, for
instance, the Genetic Improvement of software [72].

Acknowledgements. Maria Kechagia and Federica Sarro are
supported by the ERC grant no. 741278 (EPIC).

REFERENCES

[1] [n.d.]. https://pytorch.org/docs/stable/generated/torch.cuda.synchronize html?
highlight=torch%20cuda%20synchronize#torch.cuda.synchronize
[2] 2020. perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/index.php/Main_Page
[3] 2021. GProfto dot. https://github.com/jrfonseca/gprof2dot
[4] 2021. NVIDIA System Management Interface. https://developer.nvidia.com/
nvidia- system-management-interface
[5] 2021. NVIDIA/DeepLearningExamples. Retrieved 2021-09-01 from https://github.
com/NVIDIA/DeepLearningExamples
[6] 2021. Online repository for the paper Green Al: Do Deep Learning Frameworks
Have Different Costs? https://github.com/stefanos1316/ICSE_2022_artifact
[7]1 2021. The Python Profilers. https://docs.python.org/3/library/profile html
[8] 2021. Replication package for the paper Green AI: Do Deep Learning Frameworks
Have Different Costs? https://doi.org/10.5281/zenodo.6029576
[9] 2021. time(1) - Linux man page. https://linux.die.net/man/1/time
[10] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaogiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. 265-283.
Carol V Alexandru, Sebastiano Panichella, and Harald C Gall. 2017. Replicating
parser behavior using neural machine translation. In Proceedings of the 25th
International Conference on Program Comprehension. IEEE Press, 316-319.
Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 334—
344. https://doi.org/10.1109/ICSME.2016.31
[13] J. Bornholt, T. Mytkowicz, and K. S. McKinley. 2012. The model is not enough:
Understanding energy consumption in mobile devices. Hot Chips, 1-3.

[11

[12

https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html?highlight=torch%20cuda%20synchronize#torch.cuda.synchronize
https://pytorch.org/docs/stable/generated/torch.cuda.synchronize.html?highlight=torch%20cuda%20synchronize#torch.cuda.synchronize
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/jrfonseca/gprof2dot
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/stefanos1316/ICSE_2022_artifact
https://docs.python.org/3/library/profile.html
https://doi.org/10.5281/zenodo.6029576
https://linux.die.net/man/1/time
https://doi.org/10.1109/ICSME.2016.31

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

[27]

[28

[29

[30

[31

[32

[33

[34]

A. Canziani, Adam Paszke, and E. Culurciello. 2016. An Analysis of Deep Neural
Network Models for Practical Applications. ArXiv abs/1605.07678 (2016).
Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe
Liu. 2020. A comprehensive study on challenges in deploying deep learning based
software. In Proceedings of the 28th ACM Jjoint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
750-762. https://doi.org/10.1145/3368089.3409759

Shaiful Alam Chowdhury, Abram Hindle, Rick Kazman, Takumi Shuto, Ken Mat-
sui, and Yasutaka Kamei. 2019. GreenBundle: An Empirical Study on the Energy
Impact of Bundled Processing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 1107-1118. https://doi.org/10.1109/ICSE.2019.00114
ISSN: 1558-1225.

Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (2 ed.).
Routledge, New York. https://doi.org/10.4324/9780203771587

Ivan Tomas Cotes-Ruiz, Rocio P. Prado, Sebastian Garcia-Galan, Jose Enrique
Munoz-Exposito, and Nicolas Ruiz-Reyes. 2017. Dynamic Voltage Frequency
Scaling Simulator for Real Workflows Energy-Aware Management in Green
Cloud Computing. PLOS ONE 12, 1 (Jan. 2017), e0169803. https://doi.org/10.
1371/journal.pone.0169803

Luis Cruz. 2021. 16 Guidelines for Effective Data Visualizations in Academic
Papers. http://luiscruz.github.io/2021/03/01/effective-visualizations.html. Blog
post.

Luis Cruz. 2021. Green Software Engineering Done Right: a Scientific Guide
to Set Up Energy Efficiency Experiments. http://luiscruz.github.io/2021/10/10/
scientific- guide.html. Blog post.

Luis Cruz. 2021. Tools to Measure Software Energy Consumption from your
Computer. http://luiscruz.github.io/2021/07/20/measuring-energy.html. https:
//doi.org/10.6084/m9.figshare.19145549.v1 Blog post.

Alex Cummaudo, Rajesh Vasa, John Grundy, and Mohamed Abdelrazek. 2020.
Requirements of API Documentation: A Case Study into Computer Vision Ser-
vices. IEEE Transactions on Software Engineering (2020). https://doi.org/10.1109/
tse.2020.3047088

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 2978-2988. https://doi.org/10.18653/v1/P19-1285

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. 2010. RAPL: Memory
power estimation and capping. In 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED). 189-194. https://doi.org/10.1145/
1840845.1840883

Mukund Deshpande and George Karypis. 2004. Item-based top-N recommen-
dation algorithms. ACM Transactions on Information Systems 22, 1 (Jan. 2004),
143-177. https://doi.org/10.1145/963770.963776

Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A Validation
of DRAM RAPL Power Measurements. In Proceedings of the Second International
Symposium on Memory Systems (Alexandria, VA, USA) (MEMSYS ’16). Association
for Computing Machinery, New York, NY, USA, 455-470. https://doi.org/10.
1145/2989081.2989088

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171-4186. https://doi.org/10.18653/v1/N19-1423

Michael D Ernst. 2017. Natural language is a programming language: Applying
natural language processing to software development. In LIPIcs-Leibniz Interna-
tional Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Daniel] Felleman and David C Van Essen. 1991. Distributed Hierarchical Pro-
cessing in the Primate Cerebral Cortex. Cerebral Cortex 1, 1 (1991), 1-47.
Stephen R Foster, William G Griswold, and Sorin Lerner. 2012. WitchDoctor: IDE
support for real-time auto-completion of refactorings. In Software Engineering
(ICSE), 2012 34th International Conference on. IEEE, 222-232.

Cuijiao Fu, Depei Qian, and Zhongzhi Luan. 2018. Estimating Software Energy
Consumption with Machine Learning Approach by Software Performance Fea-
ture. In 2018 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE Smart Data (SmartData). 490-496.
https://doi.org/10.1109/Cybermatics_2018.2018.00106

Eva Garcia-Martin, Crefeda Faviola Rodrigues, Graham Riley, and Hakan Grahn.
2019. Estimation of energy consumption in machine learning. j. Parallel and
Distrib. Comput. 134 (2019), 75-88. https://doi.org/10.1016/j.jpdc.2019.07.007
Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning.. In AAAIL 1345-1351.

[35

[36

[37

@
&,

[39

[40

[41

[42

[43]

[44

T~
S

[46

[47

[48

[49]

[50

[51]

(52

[53

[54

[55]

S. Georgiou et al.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2020. Mask R-
CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 2 (2020),
386-397. https://doi.org/10.1109/TPAMI.2018.2844175

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770-778. https://doi.org/10.1109/CVPR.2016.90
Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW °17). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, CHE, 173-182.
https://doi.org/10.1145/3038912.3052569

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 837-847.

Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles
Campbell, and Stephen Romansky. 2014. GreenMiner: A Hardware Based Mining
Software Repositories Software Energy Consumption Framework. In Proceedings
of the 11th Working Conference on Mining Software Repositories (MSR 2014). ACM,
New York, NY, USA, 12-21.

Sitao Huang, Carl Pearson, Rakesh Nagi, Jinjun Xiong, Deming Chen, and Wen-
mei Hwu. 2019. Accelerating Sparse Deep Neural Networks on FPGAs. In 2019
IEEE High Performance Extreme Computing Conference (HPEC). 1-7. https://doi.
org/10.1109/HPEC.2019.8916419

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073-2083.

F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. 1977. Perplexity—a measure of
the difficulty of speech recognition tasks. The Journal of the Acoustical Society of
America 62, S1 (Dec. 1977), S63-S63. https://doi.org/10.1121/1.2016299 Publisher:
Acoustical Society of America.

Rie Johnson and Tong Zhang. 2015. Effective Use of Word Order for Text Cat-
egorization with Convolutional Neural Networks. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 103-112.

Edward Y. Y. Kan, W. K. Chan, and T. H. Tse. 2012. EClass: An execution
classification approach to improving the energy-efficiency of software via ma-
chine learning. Journal of Systems and Software 85, 4 (2012), 960-973. https:
//doi.org/10.1016/j.js5.2011.11.1010

Richard Kavanagh and Karim Djemame. 2019. Rapid and accurate energy models
through calibration with IPMI and RAPL. Concurrency and Computation: Practice
and Experience 31, 13 (2019), e5124. https://doi.org/10.1002/cpe.5124

Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and
Zhonghong Ou. 2018. RAPL in Action: Experiences in Using RAPL for Power
Measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. 3, 2, Article 9
(March 2018), 26 pages. https://doi.org/10.1145/3177754

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (May
2017), 84-90. https://doi.org/10.1145/3065386

Mohit Kumar, Xingzhou Zhang, Liangkai Liu, Yifan Wang, and Weisong Shi.
2020. Energy-Efficient Machine Learning on the Edges. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 912-921.
https://doi.org/10.1109/IPDPSW50202.2020.00153

Varsha S. Lalapura, J. Amudha, and Hariramn Selvamuruga Satheesh. 2021. Re-
current Neural Networks for Edge Intelligence: A Survey. ACM Comput. Surv. 54,
4, Article 91 (May 2021), 38 pages. https://doi.org/10.1145/3448974

James Laros III, Kevin Pedretti, Suzanne M. Kelly, Wei Shu, Kurt Ferreira, John
Vandyke, and Courtenay Vaughan. 2013. Energy Delay Product. In Energy-
Efficient High Performance Computing. Springer London, 51-55. https://doi.org/
10.1007/978-1-4471-4492-2_8

Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. 1997. Face
recognition: A convolutional neural-network approach. IEEE transactions on
neural networks 8, 1 (1997), 98-113.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu,
and Caiwen Ding. 2020. Efficient Transformer-based Large Scale Language
Representations using Hardware-friendly Block Structured Pruning. In Findings
of the Association for Computational Linguistics: EMINLP 2020. Association for
Computational Linguistics, Online, 3187-3199. https://doi.org/10.18653/v1/2020.
findings-emnlp.286

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. 2016. Evaluating the
Energy Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs.
In 2016 IEEE International Conferences on Big Data and Cloud Computing (BD-
Cloud), Social Computing and Networking (SocialCom), Sustainable Computing

https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1109/ICSE.2019.00114
https://doi.org/10.4324/9780203771587
https://doi.org/10.1371/journal.pone.0169803
https://doi.org/10.1371/journal.pone.0169803
http://luiscruz.github.io/2021/03/01/effective-visualizations.html
http://luiscruz.github.io/2021/10/10/scientific-guide.html
http://luiscruz.github.io/2021/10/10/scientific-guide.html
http://luiscruz.github.io/2021/07/20/measuring-energy.html
https://doi.org/10.6084/m9.figshare.19145549.v1
https://doi.org/10.6084/m9.figshare.19145549.v1
https://doi.org/10.1109/tse.2020.3047088
https://doi.org/10.1109/tse.2020.3047088
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/Cybermatics_2018.2018.00106
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1109/HPEC.2019.8916419
https://doi.org/10.1109/HPEC.2019.8916419
https://doi.org/10.1121/1.2016299
https://doi.org/10.1016/j.jss.2011.11.1010
https://doi.org/10.1016/j.jss.2011.11.1010
https://doi.org/10.1002/cpe.5124
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3065386
https://doi.org/10.1109/IPDPSW50202.2020.00153
https://doi.org/10.1145/3448974
https://doi.org/10.1007/978-1-4471-4492-2_8
https://doi.org/10.1007/978-1-4471-4492-2_8
https://doi.org/10.18653/v1/2020.findings-emnlp.286
https://doi.org/10.18653/v1/2020.findings-emnlp.286

Green-Al: Do Different Deep Learning Frameworks...

[56]

[57]

[58]

[59]

[60

[61]

[62

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70

[71]

[72]

[73]

and Communications (SustainCom) (BDCloud-SocialCom-SustainCom). 477-484.
https://doi.org/10.1109/BDCloud-Social Com-SustainCom.2016.76

Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomas
Kocisky, Fumin Wang, and Andrew Senior. 2016. Latent Predictor Networks for
Code Generation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vol. 1. 599-609.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
In Computer Vision — ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling (Eds.). Springer International Publishing, Cham, 21-37.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An Empirical Study of Practi-
tioners’ Perspectives on Green Software Engineering. In Proceedings of the 38th
International Conference on Software Engineering (ICSE '16). ACM, New York, NY,
USA, 237-248. https://doi.org/10.1145/2884781.2884810

Andrea McIntosh, Safwat Hassan, and Abram Hindle. 2018. What can Android
mobile app developers do about the energy consumption of machine learning?
Empirical Software Engineering (10 May 2018), 1-42.

1. Moura, G. Pinto, F. Ebert, and F. Castor. 2015. Mining Energy-Aware Commits.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. 56—67.
https://doi.org/10.1109/MSR.2015.13

Takuya Narihira, Javier Alonsogarcia, Fabien Cardinaux, Akio Hayakawa, Masato
Ishii, Kazunori Iwaki, Thomas Kemp, Yoshiyuki Kobayashi, Lukas Mauch, Akira
Nakamura, Yukio Obuchi, Andrew Shin, Kenji Suzuki, Stephen Tiedmann, Ste-
fan Uhlich, Takuya Yashima, and Kazuki Yoshiyama. 2021. Neural Network
Libraries: A Deep Learning Framework Designed from Engineers’ Perspectives.
arXiv:2102.06725 [cs.LG]

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical
statistical machine translation for language migration. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering. ACM, 651-654.
Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 574~
584.

Srinivas Pandruvada. 2014. NVIDIA System Management Interface. https://01.
org/blogs/2014/running-average-power-limit- %E2%80%93-rapl

C. Pang, A. Hindle, B. Adams, and A. E. Hassan. 2016. What Do Programmers
Know about Software Energy Consumption? IEEE Software 33, 3 (May 2016),
83-89. https://doi.org/10.1109/MS.2015.83

Juan Manuel Paniego, Silvana Gallo, Martin Pi Puig, Franco Chichizola, Laura
De Giusti, and Javier Balladini. 2018. Analysis of RAPL Energy Prediction Ac-
curacy in a Matrix Multiplication Application on Shared Memory. In Computer
Science — CACIC 2017, Armando Eduardo De Giusti (Ed.). Springer International
Publishing, Cham, 37-46.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
a method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (ACL "02).
Association for Computational Linguistics, USA, 311-318. https://doi.org/10.
3115/1073083.1073135

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep face
recognition.. In BMVC, Vol. 1. 6.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
2011. Fine-Grained Power Modeling for Smartphones Using System Call Tracing
(EuroSys ’11). Association for Computing Machinery, New York, NY, USA, 153-168.
https://doi.org/10.1145/1966445.1966460

Rui Pereira, Marco Couto, Joao Saraiva, Jacome Cunha, and Joao Paulo Fer-
nandes. 2016. The Influence of the Java Collection Framework on Overall En-
ergy Consumption. In Proceedings of the 5th International Workshop on Green
and Sustainable Software (GREENS ’16). ACM, New York, NY, USA, 15-21.
https://doi.org/10.1145/2896967.2896968

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(2018), 415-432. https://doi.org/10.1109/TEVC.2017.2693219

Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. sk_p: a neural program corrector for MOOCs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity. ACM, 39-40.

(74

[79

(80

(81

(82

(83]

(84]

(85

%
2

[87

(88

[89

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

Richard N M Rudd-Orthner and Lyudmila Mihaylova. 2019. Non-Random Weight
Initialisation in Deep Learning Networks for Repeatable Determinism. In 2019
10th International Conference on Dependable Systems, Services and Technologies
(DESSERT). https://doi.org/10.1109/DESSERT.2019.8770007

Tara N Sainath, Brian Kingsbury, George Saon, Hagen Soltau, Abdel-rahman
Mohamed, George Dahl, and Bhuvana Ramabhadran. 2015. Deep convolutional
neural networks for large-scale speech tasks. Neural Networks 64 (2015), 39-48.
Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AL
Commun. ACM 63, 12 (Nov. 2020), 54-63. https://doi.org/10.1145/3381831

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AL
Commun. ACM 63, 12 (Nov. 2020), 54-63. https://doi.org/10.1145/3381831
Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and
Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 3645-3650. https://doi.org/10.18653/
v1/P19-1355

Marek Suchanek, Milan Navratil, Don Domingo, and Laura Bailey. 2018. 4.4. CPU
Frequency Governors. https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1-9.

Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of
the CL Common Language Effect Size Statistics of McGraw and Wong. Journal
of Educational and Behavioral Statistics 25, 2 (2000), 101-132. https://doi.org/10.
3102/10769986025002101 _eprint: https://doi.org/10.3102/10769986025002101.
Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering
clear, natural identifiers from obfuscated JS names. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 683-693.

Andy Wagner, Tiyasa Mitra, Mrinal Iyer, Godfrey Da Costa, and Marc Tremblay.
2020. Position Masking for Language Models. arXiv:2006.05676 [cs.CL]

Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan
Lin, and Zhangyang Wang. 2019. E2-Train: Training State-of-the-art CNNs
with Over 80% Energy Savings. Advances in Neural Information Process-
ing Systems 32 (2019). https://proceedings.neurips.cc/paper/2019/hash/
663772€a088360f95bac3dc7ffb841be- Abstract.html

Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In IJCAL 3034-3040.

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87-98.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016).

Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 440-450.
Xingzhou Zhang, Yifan Wang, and Weisong Shi. 2018. pCAMP: Performance
Comparison of Machine Learning Packages on the Edges. In USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 18). USENIX Association, Boston, MA.
https://www.usenix.org/conference/hotedge18/presentation/zhang

https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1109/MSR.2015.13
http://arxiv.org/abs/2102.06725
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1109/DESSERT.2019.8770007
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
http://arxiv.org/abs/2006.05676
https://proceedings.neurips.cc/paper/2019/hash/663772ea088360f95bac3dc7ffb841be-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/663772ea088360f95bac3dc7ffb841be-Abstract.html
https://www.usenix.org/conference/hotedge18/presentation/zhang

	Abstract
	1 Introduction
	2 Background
	3 Experimental Setup
	3.1 Research Questions
	3.2 Benchmark
	3.3 Evaluation Measures
	3.4 Execution Framework
	3.5 Experimental Settings

	4 Results
	4.1 Answer to RQ1
	4.2 Answer to RQ2
	4.3 Answer to RQ3
	4.4 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	References

