
Extending Maintainability Analysis Beyond
Code Smells

DISSERTATION FOR THE AWARD OF THE DOCTORAL
DIPLOMA

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

2019

Tushar Sharma
Department of Management Science and Technology

Athens University of Economics and Business

ii

Department of Management Science and Technology
Athens University of Economics and Business

Email: tushar@aueb.gr

Copyright 2019 Tushar Sharma
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

iii

Supervised by Professor Diomidis Spinellis

iv

Dedicated to my father
who could not see this thesis completed

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Proposed Solution and Contributions . 4
1.4 Research method . 6
1.5 Thesis outline . 6

2 Related Work 8
2.1 Introduction . 8
2.2 Method . 9

2.2.1 Research objectives and questions . 10
2.2.2 Literature search protocol . 10

2.2.2.1 Literature search – Phase 1 11
2.2.2.2 Literature search – Phase 2 12
2.2.2.3 Literature search – Phase 3 12

2.3 Results and Discussion . 13
2.3.1 LR-RQ1: What is the definition of a software smell? 14

2.3.1.1 LR-RQ1.1: What are the defining characteristics of a soft-
ware smell? . 14

2.3.1.2 LR-RQ1.2: What are the types of smells? 14
2.3.1.3 LR-RQ1.3: How are the smells classified? 19
2.3.1.4 LR-RQ1.4: Are smells and antipatterns considered syn-

onyms? . 20
2.3.2 LR-RQ2: How do smells get introduced in software systems? 21
2.3.3 LR-RQ3: How do smells affect the software development processes,

artifacts, or people? . 23
2.3.4 LR-RQ4: How do smells get detected? 24

2.3.4.1 Machine learning techniques on source code 28
2.3.5 LR-RQ5: What are the open research questions? 31

2.4 Conclusions . 39

3 Methodology 41
3.1 Research Objectives . 41

v

vi

3.1.1 Maintainability Analysis for Production Source Code 41
3.1.2 Detecting Smells using Deep Learning 43
3.1.3 Maintainability Analysis for Configuration Code 45
3.1.4 Maintainability Analysis for Database Code 47

3.2 Theoretical Background . 48
3.2.1 Code Smells . 48

3.2.1.1 Architecture Smells . 49
3.2.1.2 Design Smells . 49
3.2.1.3 Implementation Smells . 49

3.2.2 Exploring Deep Learning-based Solution for Smell Detection 50
3.2.2.1 Challenges in Applying Deep Learning on Source Code . . 51
3.2.2.2 Selection of Smells . 53

3.2.3 Configuration Smells . 53
3.2.3.1 Implementation Configuration Smells 54
3.2.3.2 Design Configuration Smells 56

3.2.4 Database Smells . 58

4 Implementation 62
4.1 Analyzing Production Code for Quantitative Maintainability Assessment . . 62

4.1.1 Mining C# Repositories . 62
4.1.2 Analyzing C# Repositories Using Designite 63

4.1.2.1 Architecture . 64
4.1.2.2 Detection Mechanism for Supported Architecture Smells . 64
4.1.2.3 Detection Mechanism for Supported Design Smells 66
4.1.2.4 Detection Mechanism for Supported Implementation Smells 68
4.1.2.5 Evaluation . 69

4.2 Detecting Smells using Deep Learning . 71
4.2.1 Data Generation and Curation . 71

4.2.1.1 Downloading Repositories 71
4.2.1.2 Smell Detection . 72
4.2.1.3 Splitting Code Fragments 72
4.2.1.4 Generating Training and Evaluation Data 72
4.2.1.5 Tokenizing Learning Data 72
4.2.1.6 Data Preparation . 73

4.2.2 Architecture of Deep Learning Models 74
4.2.2.1 cnn Model . 74
4.2.2.2 rnn Model . 76

4.2.3 Hardware Specification . 77
4.3 Analyzing Configuration Code for Quantitative Maintainability Assessment 78

4.3.1 Selecting and Downloading Puppet repositories 78
4.3.2 Design Configuration Smells — Detection Strategies 79

4.4 Analyzing Database Code for Maintainability Assessment 81

vii

4.4.1 Mining Repositories . 81
4.4.1.1 Selecting Industrial Repositories 81
4.4.1.2 Selecting Open-source Repositories 81
4.4.1.3 Extracting sql Statements 82
4.4.1.4 Analyzing and Detecting Smells 82

4.4.2 DbDeo and Detection Strategies for Database Smells 82
4.4.3 Accuracy of DbDeo . 84

4.4.3.1 Accuracy of the sql Statements Extraction 84
4.4.3.2 Accuracy of Smell Detection 85

5 Results and Discussion 86
5.1 Results of Maintainability Analysis on Production Code 86

5.1.1 P-RQ1. What is the distribution of implementation, design, and ar-
chitecture smells in C# code? . 86

5.1.2 P-RQ2. Do the detected smell instances belonging to different gran-
ularities correlate? . 89

5.1.3 P-RQ3. Is the principle of coexistence applicable to smells in C#
projects? . 90

5.1.4 P-RQ4. Does smell density depend on the size of the C# repository? 92
5.1.5 P-RQ5. Are architecture smells collocated with design smells? 93
5.1.6 P-RQ6. Can the refactoring of design smells lead to fewer architec-

ture smells? . 97
5.1.7 Discussion and Implications . 101

5.1.7.1 Discussion . 101
5.1.7.2 Secondary Uses of this Work 102

5.2 Results of Detecting Smells using Deep Learning 103
5.2.1 D-RQ1. Is it possible to use deep learning methods to detect code

smells? If yes, which deep learning method performs superior? . . . 103
5.2.1.1 D-RQ1.H1. It is feasible to detect smells using deep learn-

ing methods. 105
5.2.1.2 D-RQ1.H2. cnn-2d performs better than cnn-1d in the

context of detecting smells. 107
5.2.1.3 D-RQ1.H3. rnn model performs better than cnn models in

the smell detection context. 107
5.2.2 D-RQ2. Is transfer-learning feasible in the context of detecting smells?

If yes, which deep learning model exhibits superior performance in
detecting smells when applied in transfer-learning setting? 108
5.2.2.1 D-RQ2.H1. It is feasible to apply transfer-learning in the

context of code smells detection. 110
5.2.2.2 D-RQ2.H2. Transfer-learning performs inferior compared

to direct learning. 111
5.2.3 Discussion . 113

viii

5.2.3.1 Is there any silver-bullet? 113
5.2.3.2 Performance comparison with baseline 113
5.2.3.3 Poor performance in detecting a design smell 114
5.2.3.4 Trading performance with training-time 115

5.3 Results of Maintainability Analysis on Configuration Code 116
5.3.1 C-RQ1. What is the distribution of maintainability smells in config-

uration code? . 116
5.3.2 C-RQ2. What is the relationship between the occurrence of design

configuration smells and implementation configuration smells? . . . 117
5.3.3 C-RQ3. Is the principle of coexistence applicable to smells in con-

figuration projects? . 118
5.3.4 C-RQ4. Does smell density depend on the size of the configuration

project? . 120
5.3.5 Discussion . 121

5.4 Results of Maintainability Analysis on Database Code 122
5.4.1 Developers’ Survey on Database Smells 122
5.4.2 DB-RQ1. What are the occurrence patterns of database smells? . . . 124
5.4.3 DB-RQ2. Does the size of the project or the database play a role in

smell density? . 125
5.4.4 DB-RQ3. Does the nature of code (type of the application, or usage

of orm frameworks) affect the smell density? 126
5.4.5 DB-RQ4. What is the degree of co-occurrence among database smells? 127
5.4.6 Discussion . 128

5.4.6.1 Qualitative Analysis of the Results 128
5.5 Threats to Validity . 130

5.5.1 Construct Validity . 130
5.5.2 Internal Validity . 131
5.5.3 External Validity . 131

6 Conclusions and Future Work 133
6.1 Summary of the Results . 133
6.2 Contributions of the Thesis . 135
6.3 Future Work . 137

Bibliography 140

List of Figures

2.1 Overview of the study; a number in brackets shows the number of associated
references . 13

2.2 A layered overview of smell detection methods. Each detection method
starts from the code (or other source artifact) and goes through various steps
to detect smells. The direction of the arrows shows the flow direction and
annotations on the arrows show the detection method (first part) and the
step number (second part). 25

2.3 A recorded smell could be a false-positive instance, a smell that is not a
quality problem, or a definite quality problem. 32

2.4 The number of studies detecting a specific smell 37

3.1 Overview of the maintainability analysis study on C# code 43
3.2 Overview of the Proposed Method . 45
3.3 Overview of the maintainability analysis study on configuration (Puppet) code 46
3.4 Overview of the maintainability analysis study on database schema code . . 48
3.5 An annotated Puppet example with all the cataloged implementation con-

figuration smells . 54

4.1 Presentation of identified smells in Designite 64
4.2 Architecture of the tool . 65
4.3 Tokens generated by Tokenizer for an example 73
4.4 Architecture of employed cnn . 75
4.5 Architecture of employed RNN . 76

5.1 Scatter plots showing co-occurrence between smells in two granularities . . 90
5.2 Correlation between individual architecture and design smells 91
5.3 Average co-occurrence (intra-category) for architecture smells 92
5.4 Average co-occurrence (intra-category) for design smells 92
5.5 Average co-occurrence (intra-category) for implementation smells 93
5.6 Smell density for implementation, design, and architecture smells against

lines of code . 94
5.7 Collocation analysis between architecture and design smells 97
5.8 Removed architecture smells (in percentages) after simulating design smells

refactoring . 100

ix

x

5.9 Scatter plots of the performance (F1) exhibit by the considered deep learning
models along with their corresponding trendline 104

5.10 Boxplots of the performance (F1) exhibit by the considered deep learning
models for all the four smells . 105

5.11 Comparative performance of the deep learning models for each considered
smell . 106

5.12 Scatter plots for each model and for each considered smell comparing F1 of
direct-learning and transfer-learning along with corresponding trendline . . 109

5.13 Comparative performance of the deep learning models for each considered
smell in transfer-learning settings . 110

5.14 Comparison of performance of the deep learning models between direct-
learning (DL) and transfer-learning (TL) settings 111

5.15 Co-occurrence between implementation and design configuration smells by
(a) volume and by (b) existence . 118

5.16 Average co-occurrence (intra-category) for implementation and design con-
figuration smells . 119

5.17 Smell density for (a) implementation configuration smells and (b) design
configuration smells against lines of code . 120

5.18 Experience of respondents in terms of number of years as well as the number
of database applications developed by them 122

5.19 Respondents’ perspective of considered database smells 123
5.20 Average smell density of different types of applications (left) and projects

using ORM frameworks and rest of the projects (right) 127
5.21 Average co-occurrence among database smells 128

List of Tables

2.1 Studies selected in the Phase 1 . 11
2.2 Studies selected in the Phase 2 . 12
2.3 Types of smells . 15
2.4 Common code smells . 15
2.4 Common code smells . 16
2.4 Common code smells . 17
2.5 Actor-based Classification of Smells Causes 23
2.6 Impact of Smells . 24
2.7 Smell Detection Methods and Corresponding References 26
2.7 Smell Detection Methods and Corresponding References 27
2.7 Smell Detection Methods and Corresponding References 28
2.8 Smell Detection Methods and supported smells 34
2.8 Smell Detection Methods and supported smells 35
2.8 Smell Detection Methods and supported smells 36

3.1 Description of Detected Design Smells . 50
3.2 Description of Detected Implementation Smells and Their Distribution . . . 51
3.3 Mapping Between Implementation Configuration Smells and Correspond-

ing Best Practices . 55

4.1 Characteristics of the Analyzed Repositories 63
4.2 Results of Manual Validation . 70
4.3 Number of samples in each step of preparing input data 73
4.4 Chosen values of hyper-parameters for the cnn model 76
4.5 Chosen values of hyper-parameters for the rnn model 77
4.6 Characteristics of the Downloaded Repositories 78
4.7 Characteristics of the analyzed industrial (I) as well as open-source (OSS)

repositories . 83
4.8 Performance of the sql extraction process 85
4.9 Detected smells and identified false-positives 85

5.1 Distribution of Implementation Smells . 87
5.2 Number of detected instances and smell density (per kloc) of design smells

in the analyzed repositories . 88

xi

xii

5.3 Number of detected instances and smell density (per kloc) of architecture
smells in the analyzed repositories . 88

5.4 Contingency matrix for a design and architecture smell 95
5.5 Architecture smell instances detected before and after the refactoring simu-

lation for design smells . 100
5.6 Number of positive (P) and negative (N) samples used for training and eval-

uation for RQ1 . 103
5.7 Performance of all three models with configuration corresponding to the

optimal performance. L refers to deep learning layers, F refers to number
of filters, K refers to kernel size, MPW refers to maximum pooling window
size, ED refers to embedding dimension, LSTM refers to number of LSTM
units, and E refers to number of epochs. 106

5.8 Performance (F1) comparison of RNN with CNN-1D and CNN-2D 107
5.9 Positive (P) and negative (N) number of samples used for training and eval-

uation for RQ2 . 110
5.10 Performance of all three models with configuration corresponding to the

optimal performance. L refers to deep learning layers, F refers to number
of filters, K refers to kernel size, MPW refers to maximum pooling window
size, ED refers to embedding dimension, LSTM refers to number of LSTM
units, and E refers to number of epochs. 111

5.11 Difference in ratio (in percent) of positive and negative evaluation samples
in RQ2 compared to sample ratio in RQ1 . 112

5.12 Comparison of performance (Precision, Recall, and F1) with a random clas-
sifier (RC) following the training set frequencies or responding always indi-
cating a smell . 114

5.13 Average training-time taken by the models to train a single epoch in seconds 115
5.14 Distribution of Detected Implementation and Design Configuration Smells . 117
5.15 Results of Correlation Analysis . 119
5.16 Results of Correlation Analysis . 121
5.17 Occurrences of database schema smells for industry (I) as well as open-

source (OSS) repositories . 124

Acknowledgements

—by Veda Vyāsa in Skanda Purana

Meaning: My Guru (teacher) is the representative of Brahma, Vishnu, and
Shiva. He creates, sustains knowledge and destroys the weeds of ignorance.
I offer my obeisance to my Guru.

The above shloka precisely capture my thoughts about my teachers Prof. Diomidis
Spinellis and Prof. Panos Louridas. Prof. Spinellis put a lot of faith in me and accepted
me as his student. He is a great mentor, researcher, developer, and administrator. Despite
his very busy schedule, he always offered his help and advice related to research, teaching,
or even non-technical aspects coming from his abundant knowledge and experience. He
doesn’t forget to pat the back on our achievements but also stand tall and support his stu-
dents on each tumble (such as a paper rejection). Behind his technical avatar, he is a person
with very pure heart who is always ready to offer his help on any matter. From the begin-
ning, whether I required his help with the initial paperwork to come to Greece, advice on
finding good restaurants or nice islands to visit, finding a tax consultant, or discussing the
trade-offs between academia and industry to choose the future course, his unparalleled sup-
port made my migration to Greece and staying in Athens possible and a joyful experience. I
am indebted to him for the great amount of energy and time he invested in supervising me.

Prof. Panos Louridas—well, self declared non-statisticianwho in reality knows statistics
probably more than the rest of the lab combined. If any of us dealing with any mathematics,
machine learning, or algorithms, he is our go-to person. The first thing youwill notice about
him is his smile and energy; he is kind and always ready to help. He is a ground to earth
person who reveals the richness of his copious knowledge when one works with him. He
pays attention to the details, seeks perfection, and makes you work harder. I learned a lot
of things from him.

Marios is the first Greek friend I got. When I landed in Athens first time with some
worries of unknown future, this warm-hearted and friendly person’s smile welcomed me.
He not only came to pick me up from the airport (which was officially not required and not

xiii

xiv

expected), and dropped me to my airbnb but also helped me with the Greek supermarkets
to make sure a smooth settling down for me. Getting resident permit in Greece is a lengthy
and laborious affair; without Marios’s help I don’t think I could have done it. He spent
countless days and went the extra mile always to facilitate me fulfilling the requirements of
staying in Greece. We also enjoy our technical discussions on various topics — whether it
is about our ongoing work, some random ideas that may lead to interesting papers, or even
startup ideas. I am sure TU Delft is giving more wings to his career.

I can’t forget our erstwhile lab in themain building of auebwhere aKalimera fromMaria
used to welcome me every morning. Maria is a hardworking, determined, and cheerful
person. I remember countless discussions with her not limited to technical topics that used
to start during our lunch break but frequently used to spill over even when we come back
to the lab. I miss the delicious moustokolora and cake that her mother cooks for her and she
generously shared with us.

Antonis and Stefanos – my beer buddies. Both are the living alarms – Stefanos for lunch
and Antonis for beer; well, for Antonis it is a little bit exaggeration but not at all for Stefanos
:). We are like brothers — we shared many activities such as having lunch, drinking beers,
sharing thoughts, admiring ;) and laughing on each other and literally grew up for three
years together. We did many trips together and I thoroughly enjoyed their company. Both
of them value friendship and they know how to earn and keep people as friends. They go
to any extreme to help their friends in need and I am blessed to be their friend. Antonis is
mature and sensible while Stefanos gained the wisdom tooth recently when he entered into
his thirties.

When you organize a big event such as sattose1, you need reliable and dependable
shoulders to share your load of thousand things that you need to put together. Vasiliki
gladly accepted the challenge and put tremendous effort to make the event successful; she
is the single biggest reason behind the flawless execution of the event. She is always ready
to listen, share her honest opinions, andmost importantly sacrifice her time to help anybody
in need. She has reviewed many of my papers and this thesis and helped me improve the
text and my writing. She put a lot of effort in whatever she takes up; I realized this yet again
when we were working on using machine learning techniques on smell detection. I wish
her more elke-less time.

sattose reminds me of another person, Alexandra, who volunteered herself for the
event and contributed to the event evenwhen shewas doing her summer internship. She put
together the initial structure and contributed generously towards the DesigniteJava project.
We developed a connection and friendship beyond technical discussions as the frequency
of our thoughts strikes a harmonious note.

What! Stereo is down‼ You know, you need to contact Konstantinos — the new young
lad who is carrying the responsibilities of maintaining Stereo. He is smart, patient, and
multi-tasker. Beside ensuring that Stereo always on and hot, he knows how to use a hot
oven to produce delicacies.

Singular Logic, as my industrial host in Athens, supported well in the entire journey.
1http://sattose.org/2018

http://sattose.org/2018

xv

Specifically, Matina was always motivating and supporting. She not only shaped and fine-
tuned the technical ideas (especially when I was analyzing database schemas) but also pro-
vided her unparalleled support to organizational and operational aspects.

My industrial host in Amsterdam, i.e., sig not only hosted me in their office multiple
times but also mentored my thoughts and supported my research. Specifically, both Joost
and Magiel gratified me with their ample experience and knowledge apart from providing
exceptional operational support from seneca perspective.

The support of the Department of Management Science and Technology at aueb along
with all the professors, teaching and support staff has contributed to my journey. Specif-
ically, I would like to convey my sincere thanks to Prof. Damianos Chatziantoniou for
reviewing an earlier draft of my database schema quality paper and providing improvement
suggestions. I would also like to thanks Anna Klouvatou from business administration to
ensure processing my payments on time.

My sincere thanks to Prof. Paramvir Singh from NIT Jalandhar who thoroughly sup-
ported me with my work on architecture smells. I wish him success for his new academic
journey at the University of Auckland.

My stay in Greece would have not been possible if I didn’t get fully funded by the
seneca project. I am sincerely thankful to the Marie Skłodowska-Curie Innovative Training
Networks (itn-eid) under which the seneca project was funded (grant agreement number
642954). Also, I would like to convey my warm thanks to all the partners that participated
in the project.

The support that I received from my family whether it was the bold decision to leave a
settled life and move to Greece, or have patience when I was burning mid-night oil gave me
strength to keep going on.

Last but not the least, I offer a bow to all the Greeks in general who accepted me socially
and made my three years a memorable life experience. I can recall countless people such
as students from my seip class, Vangelis (my landlord), our neighbors as well as unknown
Greeks who directly or indirectly made my stay easier and joyful.

- Tushar Sharma

Summary

Code smells indicate the presence of quality problems impacting many facets of software
quality such as maintainability, reliability, and testability. The presence of an excessive
number of smells in a software system makes it hard to maintain and evolve.

Software engineering researchers have carried out many empirical and mining studies
on code smells impacting various dimensions of software development. Our first aim in this
thesis is to understand the characteristics of code smells, such as their occurrence frequency,
and relationships such as correlation and collocation among smells arising at different gran-
ularities. We aim to realize the experiment with an extended scale (i.e., number of analyzed
subject systems) and breadth (i.e., mining a large variety of smells).

The software engineering community has proposed various methods to detect smells.
Machine learning techniques offer a promising alternative to deterministic smell detection
methods and provide the grounds for applying transfer-learning from one programming
language to another. We aim to perform an exploratory study to investigate the feasibility
of detecting smells using deep learning methods without carrying out extensive feature
engineering. We would also like to explore whether transfer-learning can be employed in
the smell detection context.

Apart from the production source code, other sub-domains of software such as config-
uration code in Infrastructure as Code (IaC) paradigm and database code are also prone to
maintainability issues. Our next goal is to propose a method to identify quality issues in
configuration code and carry out a maintainability analysis. We also would like to explore
the relationships between different kinds of smells at inter- as well as intra-category. Simi-
larly, we would like to propose a mechanism to collate, evaluate, and detect smells that may
arise in database schema design. We would like to propose a method to investigate code
quality of embedded sql statements, understand the impact of quality issues in connection
with properties of database and production code, and pinpoint areas where improvement in
tools, processes, or methods could be proposed to keep the database quality high.

We perform a large-scale empirical study to analyze production code written in C# from
maintainability perspective. We mine seven architecture, 19 design, 11 implementation
smells from a large set of 3,209 open-source repositories containing more than 83 mil-
lion lines of code. We find that cyclic dependency, cyclically-dependent modularization, and
magic number are the most frequently occurring architecture, design, and implementation
smells respectively. This observation may prompt developers to pay additional attention to
avoid frequently occurring smells. Our analysis observes that smell density and size of a C#

xvi

xvii

project show a weak correlation. The co-occurrence analysis shows that the architecture
smells exhibit a strong positive correlation with design smells. This implies that a project
containing a high number of design smells would also exhibit a high number of architec-
ture smells and vice-versa. We also perform fine-grain correlation between individual smell
pairs using Spearman correlation analysis. The results of individual pair-wise correlation
analysis indicate that design and architecture smells exhibit a non-monotonic relationship.
The collocation analysis reveals that apart from a few selected smell pairs, architecture and
design smells do not collocate with each other. We also explore the potential influence of
design smells refactoring on architecture smells. Our analysis shows that up to one-third of
architecture smells (in case of god component) may get removed if we refactor all detected
design smells in the component. However, a significant number of architecture smells per-
sist even after all the smells at design granularity were refactored. This result emphasizes
the need to carry out smell detection and refactoring at all source-code granularities.

In our exploration with deep learning techniques to identify smells, we develop a set of
tools (such as Designite, CodeSplit, and Tokenizer) and put together an experimental setup
to detect smells, generate code fragments, and tokenize them to feed into our deep learning
models (specifically, Convolution Neural Network and Recurrent Neural Network). We per-
form the experiments with various combination of hyper-parameters for each of the model.
Our result establishes that deep learning methods (specifically cnn and rnn in our case)
can be used for smell detection though the performance of individual models varies sig-
nificantly. We find that there is no clear winner between 1-D and 2-D convolution neural
networks; cnn-1d performs better for smells empty catch block and multifaceted abstraction
while cnn-2d performs superior than its one-dimensional counterpart for smells complex
method and magic number . We also observe that performance of the deep learning models
is smell-specific. Our experiment with applying transfer-learning proves the feasibility of
practicing transfer-learning in the context of smells detection especially for the implemen-
tation smell.

We extend the maintainability analysis to configuration code. We propose a catalog
of 13 implementation and 11 design configuration smells based on commonly known best
practices. We analyze 4,621 Puppet repositories containing 142,662 Puppet files and more
than 8.9 million lines of code using Puppeteer — a configuration smell detection tool that we
developed. Our analysis finds that the developers of Puppet repositories either do not intro-
duce code-clones at all or they do it massively. The inter-category correlation analysis for
configuration smells shows a strong correlation between smells belonging to different cat-
egories. Design configuration smells show 9% higher average co-occurrence among them-
selves than the implementation configuration smells. This observation affirms the belief
that one wrong or non-optimal design decision introduces many quality issues and there-
fore suggests the developers to take design decisions critically and diligently. Design con-
figuration smell density shows negative correlation whereas implementation configuration
smell density exhibits no correlation with the size of a project. It shows that the number of
design configuration smells decrease as the size of the configuration code increases.

Further, we carry out a comparative study between open-source and industrial code-

xviii

base from database schema quality perspective. The study investigates relational database
schema smells and its relationshipswith application and database characteristics. We present
a catalog of 13 database schema smells based on commonly known best practices to design
databases. We carry out a survey to understand developers’ perspective on database schema
smells. We download 16,052 open-source and acquire 840 industrial repositories, select to-
tal 2,925 repositories containing sql statements, analyze more than 629 million lines of
code, extract more than 393 thousand sql statements, and detect more than 66 thousand
instances of database schema smells. We observe that the smell index abuse occurs most fre-
quently in database code. We also find that some smells such as adjacency list show signif-
icantly higher proneness to occur in industrial projects compared to open-source projects.
Our analysis shows that the size of the host application has no impact on the density of
database smells; however, smell density shows a positive correlation with the size of the
database whereas application type (Desktop, Mobile, or Web) has no significant impact on
database smell density. Finally, the use of an orm framework does not help developers to
avoid database schema smells.

In summary, the thesis offers contributions to both research and practice aspects. From
the research perspective, the thesis proposes methods to carry out large-scale (both in terms
of number of subject systems and kinds of code smells detected) empirical studies for not
only production source code but also for configuration and database code. The methods
aim to understand characteristics of code smells at different granularities and subfields of
software engineering as well as to explore interesting relationships among the smells. In
addition, the thesis presents a detailed mechanism to show the feasibility of detecting code
smells using deep learning methods. Also, the method applies transfer-learning to show-
case that a deep learning classifier trained from a programming language can be used to
identify smelly code fragments belonging to another programming language. Apart from
research-oriented contributions, the thesis also adds contributions towards software engi-
neering practice. The thesis offers a set of tools: Designite—to detect a wide variety of im-
plementation, design, and architecture smells in C# source code, Puppeteer—to identify con-
figuration smells in Puppet code, DbDeo—to identify database schema smells in embedded
sql statements. Practitioners may use the various features offered by the tools to identify
maintainability issues in not only their production source code but also in their database
and configuration code to reduce technical debt.

Chapter 1

Introduction

Context is the water for the fishes of our ideas.

In this chapter, we provide the context of the work presented in this thesis, the problem
statement, our proposed solution and a summary of contributions.

1.1 Context

Kent Beck coined the term “code smell” in the landmark book of refactoring [Fow99] and
defined it as “certain structures in the code that suggest (or sometimes scream) for refactor-
ing”. Code smells indicate the presence of quality problems impacting many facets of qual-
ity [SS18] of a software system [Fow99, SSS14]. The manifestation of an excessive number
of smells in a software system makes it hard to maintain and evolve.

The impact of code smells on software development is multi-dimensional. Researchers
have explored and discussed the impact of the high number of code smells on specific aspects
of software development extensively. These aspects are associated with one of the three
dimensions of software development: software product, processes, and people. From the soft-
ware product perspective, aspects such as maintainability [BQO+12, MY12, YM13a, Yam14],
reliability [JGHK13, HZBS14, ZSSS11, BQO+14], change proneness [OCBZ09, KDPG09] and
testability [SDPAG13] have been investigated in considerable depth. In addition, source
code mining studies have examined empirical aspects associated with developers and code
smells [BDLDP+15, SCY+16].

Detecting smells is the first step towards identifying quality issues that lays the ground
work for improvingmaintainability by applying appropriate refactorings. From the research
perspective, detected smells form the basis of empirical studies. The software engineer-
ing community has proposed various methods to detect smells. Common methods to de-
tect smells are metric-based [Mar05, VMDP14], rules/heuristic-based [MGDM10, SMT16],

1

2 / 168 1.2. PROBLEM STATEMENT

history-based [PBDP+15], machine learning-based [MAB+12b, KVGS09], and optimization-
based smell detection [OKKI15].

Apart from the production code, the metaphor of code smells could be extended to sub-
domains of software systems such as configuration system and databases. Configuration
code written in languages such as Puppet [Pup18] and Chef [Che18] may also become un-
maintainable if the changes to configuration code are made without diligence and care. Sim-
ilarly, database code is also prone to smells. Typically, the use of a database in a software
systemmanifests itself as a series of ddl (Data Definition Language — e.g., create table) or
dml (Data Manipulation Language — e.g., select) sql statements. Similar to code, avoiding
best practices of the domain may lead to smells in these sql statements. In this context, Bill
Karwin [Kar10] documents a catalog of database anti-patterns. Therefore, production code
and design quality practices must be adopted to similar sub-domains of software systems
including configuration and database systems.

1.2 Problem Statement

The goal of this thesis is to enrich the existing body of knowledge about code smells by
carrying out empirical studies on production source code, by investigating the feasibil-
ity of automating smell detection through deep learning techniques, and by extending
the maintainability analysis to other sub-domains of software systems.

Goal of the thesis

Software engineering researchers have carried out many empirical and mining studies
on code smells impacting various facets of software development or developers. However,
we observe that existing mining studies on smells lack scale i.e., they rely on a limited num-
ber of subject systems analyzed for the study. The majority of the studies analyze a handful
of subject systems (< 10). Generalizing a theory based on a few subject systems presents
a considerable threat to validity. Also, existing mining studies do poorly with respect to
breadth of the experiment i.e., the types of smells analyzed in a study. Most of the existing
mining studies consider a small subset of known smells. This under-analysis makes a min-
ing study incomplete or even incorrect. Finally, most of the mining studies on code smells
are performed on the Java programming language. The under-representation of other pro-
gramming languages makes us wonder whether the results of the existing mining studies
are applicable in other similar languages.

Along the similar lines, despite the presence of a large body of work for smell detection,
the existing research has supported detection of mainly implementation and some design
smells. The research on architecture smells and their detection is still in a budding stage
[GPEM09, SSS16], and requires a serious attention from the community, given their impor-
tance and impact on the quality of software systems. The relationship (such as correlation
and collocation) among smells at various granularities has not been explored in detail.

Carrying forward the discussion about smell detection, creating a deterministic smell de-
tection tool for a specific programming language is an expensive and arduous task since it

3 / 168 1.2. PROBLEM STATEMENT

requires source code analysis starting from parsing, symbol resolution, intermediate model
preparation, and applying an appropriate mechanism (such as heuristics and metrics) on the
model. Machine learning techniques offer promising alternatives to deterministic solutions
as they not only have the potential to bring subjectivity, that in turn improves effective-
ness, in the smell detection but also provide the grounds for transferring results from one
problem to another. In particular, transfer-learning refers to the technique where a learning
algorithm exploits the commonalities between different learning tasks to enable knowledge
transfer across the tasks [BCV13]. In this context, it would be interesting to explore the
possibility of leveraging the availability of tools and data related to code smell detection in
a programming language in order to train machine learning models that address the same
problem on another language. The cross-application of a machine learning model could
provide opportunities for detecting smells without actually developing a language-specific
smell detection tool from scratch.

Apart from the production source code, other sub-domains of software such as configu-
ration code in the Infrastructure as Code (IaC) paradigm and database code are also prone to
maintainability issues. Infrastructure as Code (IaC) [HF10] is the practice of specifying com-
puting system configurations through code, automating system deployment, and managing
the system configurations through production software engineering methods. Configura-
tion code written in Puppet [Pup18], or Chef [Che18], may also become unmaintainable if
the changes to configuration code are made without diligence and care. In a recent study,
Jiang et at. [JA15] argued that configuration code must be treated as production code due
to the characteristics and maintenance needs of the configuration code. Therefore, produc-
tion code and design quality practices must be adopted to write and maintain high quality
configuration code.

Databases are an integral element of enterprise applications. The effective use of database
affects vital quality parameters, such as performance and maintainability, of these applica-
tions. Similar to production code, the sql statements may also indicate smells. Bill Kar-
win [Kar10] documents a catalog of database anti-patterns to reveal many of the practices
affecting database quality. However, their presence in software systems and their relation-
ships with other software artifacts have not been explored yet.

With the above background, we define the following research goals for the thesis.

• Understand characteristics of code smells and relationships such as frequency,
correlation, and collocation among smells arising at different granularities by
extending the scale (i.e., number of analyzed subject systems) and breadth (i.e.,
mining a large variety of smells) of the mining study.

• Perform an exploratory study to investigate the feasibility of detecting smells
using deep learning methods without carrying out extensive feature engineer-
ing. Explore whether transfer-learning can be employed in the smell detection
context.

Research goals

4 / 168 1.3. PROPOSED SOLUTION AND CONTRIBUTIONS

• Propose a method to identify quality issues in configuration code and carry out a
maintainability analysis for code written in the Infrastructure as Code paradigm.
In addition, explore the relationships among different kinds of smells at inter-
as well as intra-category.

• Explore a mechanism to collate, evaluate, and detect smells that may arise in
database schema design. Offer a method to investigate code quality of embed-
ded sql statements, understand the impact of quality issues in connection with
properties of database and production code, and pinpoint areas where improve-
ment in tools, processes, or methods could be proposed to keep the database
quality high.

1.3 Proposed Solution and Contributions

The thesis fulfills the first goal by carrying out a large scale empirical study to mine code
smells in C# projects. The study reveals fundamental, yet interesting, characteristics of
code smells in C# projects. These characteristics include — frequently occurring smells,
inter-category and intra-category correlation between design and implementation smells,
and the relationship of smell density with lines of code in each repository. Smell density is
a normalized metric that represents the average number of smells identified per thousand
lines of code.

To study architecture smells in production source code we automate the detection of
seven architecture smells in our tool Designite. We analyze a large set of repositories and
infer relationships among the smells belonging to two granularities (architecture and design)
through correlation and collocation analysis. In particular, the analysis explores whether
there are specific design smells that may act as indicators for specific architecture smells.

To fulfill the second goal, we develop a set of tools (such as Designite, CodeSplit, and To-
kenizer) and put together an experimental setup to detect smells, generate code fragments,
and tokenize them to feed into our deep learning models (specifically, Convolution Neu-
ral Networks and Recurrent Neural Networks). We perform the experiments with various
combinations of hyper-parameters for each of the models. With the above setup, we first
experiment to investigate the feasibility of employing deep learning to detect smells; we
keep both our training and evaluation samples from C#. To show the feasibility of transfer-
learning, we replace the evaluation samples written in C# with Java samples and document
the performance of our models.

For the next goal, we perform a quality analysis of configuration code and explore the
distribution of configuration smells. Configuration smells are the characteristics of a con-
figuration program or script that violate the recommended best practices and potentially af-
fect the program’s quality in a negative way. Refer to Section 3.2.3 for the detailed catalog.
We investigate the relationship between the occurrence of design configuration smells and
implementation configuration smells. Other related dimensions concerning configuration
code quality that we explore are whether the principle of coexistence is applicable to smells

5 / 168 1.3. PROPOSED SOLUTION AND CONTRIBUTIONS

in configuration projects and the relationship between smell density and the size of the
configuration project.

Further, towards the last goal defined in thiswork, wemine database smells in production-
quality systems including both industrial as well as the open-source software. Database
smells are the characteristics of database code (either ddl or dml sql statements), database
system, or stored data that indicate violation of the recommended best practices and poten-
tially affect the quality of the software system in a negative way. You may refer to Section
3.2.4 for a detailed catalog. We analyze sql statements to measure schema quality of rela-
tional databases with a focus on performance and maintainability quality attributes. Specif-
ically, we explore occurrence patterns of database schema smells and figure out the degree
of co-occurrence among schema smells. We also study the factors that affect the density of
database smells and compare these factors between industrial and open-source projects.

In summary, the thesis offers the following contributions:

• A method to carry out a large-scale empirical study to mine smells from a large num-
ber of repositories and to study smells’ characteristics in relation with project prop-
erties.

• A method to perform correlation and collocation analysis among smells belonging to
different granularities.

• A method to explore the feasibility of employing deep learning models in detecting
code smells and to investigate whether transfer-learning can be applied in the context
of smell detection.

• A method to prepare a catalog of configuration smells and perform an empirical study
on quality issues and their characteristics in the IaC paradigm.

• A method to investigate the code quality of embedded sql statements by identifying
database schema smells in a large set of repositories and study the impact of smells
on project properties.

• A set of tools to identify code smells. This includes Designite (for C#) to identify archi-
tecture, design, and implementation smells, Puppeteer to identify configuration code
smells in Puppet, DbDeo to extract sql statements and detect database schema smells.
Practitioners may use these tools to identify quality issues impacting the maintain-
ability of their software system.

• The experimental setup with all the required tools and scripts to apply deep learning
on source code. The research community may build new ideas over it or replicate the
experiment with the setup.

6 / 168 1.4. RESEARCH METHOD

1.4 Research method

The journey of the research method starts from a literature review to understand the state
of the art and to identify gaps in the current research and practice. The review reveals
the potential opportunities for researchers in the field in general and provides a basis for
defining the problem definition of the thesis.

In the design phase, we perform experimental design to address the problems that we
identify. We aim to perform a large scale empirical study to detect smells in C# code and
to carry out a study on architecture smells to identify their relationship with design smells.
We conceptualize a feasibility study to detect smells using deep learning models and to ap-
ply transfer-learning in the smell detection context. We also design an exploratory study
on configuration smells to first define configuration smells and support detection these
smells in open-source repositories. Along similar lines, we put together a study for database
schema smells; the study aims to reveal relationship between database quality and produc-
tion code in the context of both open-source and close-source proprietary code. We identify
relevant research questions to investigate for each experiment.

The implementation phase involves developing necessary tools and perform the exper-
iments. We developed Designite to analyze C# code, Puppeteer for configuration smell de-
tection, and DbDeo for database smell detection. We download open-source repositories
from GitHub and perform our analysis on the them. Apart from quantitative analysis, we
also perform qualitative analysis as well as developers’ survey to strengthen the evaluation
of the database analysis. We develop a set of tools and scripts to analyze and curate data
from existing repositories. We put together the experimental setup to detect smells using
deep learning and to establish feasibility of transfer-learning.

1.5 Thesis outline

This dissertation has six chapters. We outline the remaining five below.

Chapter 2 provides a holistic status quo of various dimensions associated with software
smells. It presents the state-of-the-art in the current research concerning software
smells, reveals deficiencies in present tools and techniques, and identifies research
opportunities.

Chapter 3 illustrates the theoretical model and study design of our experiments alongwith
specific research objectives for each experiment.

Chapter 4 provides implementation details of each experiment including tool support, and
qualitative and quantitative analysis.

Chapter 5 presents results from our study and discusses the implications of the obtained
results.

7 / 168 1.5. THESIS OUTLINE

Chapter 6 presents conclusions of the thesis and chalks out some potential avenues for
future extensions.

We use the following convention for the highlighted boxes in this thesis.

Goals

Contributions

Key results

Implications

Information or side note

Opportunities

Convention used for highlighted boxes

Chapter 2

Related Work

The past is our teacher to build a better future. Well… only if
we learn from it.

In this chapter, we present a comprehensive literature review of the domain of software
smells. Section 2.1 introduces the term code smells and provides background of the related
literature reviews. We discuss the method employed to perform the literature survey in
Section 2.2 and define the research questions to explore. In Section 2.3, we present results
and provide discussion for each addressed research question.

2.1 Introduction
Kent Beck coined the term “code smell” in the context of identifying quality issues in code
that can be refactored to improve the maintainability of a software [Fow99]. He emphasized
that the presence of excessive number of smells in a software system makes the software
hard to maintain and evolve.

Since then, the smell metaphor has been extended to various related subdomains of soft-
ware systems including testing [Deu01], database [Kar10], and configuration [SFS16]. Fur-
ther, since the inception of the metaphor, the software engineering community has explored
various associated dimensions that include proposing a catalog of smells, detecting smells
using a variety of techniques, exploring the relationships among smells, and identifying the
causes and effects of smells.

The large number of available resources poses a challenge, equally to researchers and
practitioners, to comprehend the status quo of tools, methods, and techniques concerning
software smells. Analyzing and synthesizing available information could not only help the
software engineering community understand the existing knowledge, but also reveal the
challenges that exist in the present set of methods and opportunities to address them.

8

9 / 168 2.2. METHOD

There have been a few attempts to understand current practices and provide an overview
of the existing knowledge about software smells. Singh et al. [SK17] present a systematic lit-
erature review on code smells and refactoring in object-oriented software systems by study-
ing 238 primary studies. The survey focuses on the smell detection methods and tools as
well as the techniques and tools used to refactor them. The authors divide smell detec-
tion methods based on the degree of automation employed in implementing smell detection
methods.

Similarly, Zhang et al. [ZHB11] review studies from year 2000 to 2009 and draw a few
observations about current research on smells. They reveal a large gap in existing smell
literature — current studies have chosen a small number of smells for their study and some
of the smells (such as message chains) are poorly explored by the community. Further, the
study emphasizes that the impact of code smells is not well understood.

Various tools have been proposed to detect smells. Fernandes et al. [FOV+16] provide a
comprehensive study containing a comparison of 84 smell detection tools. Similarly, Rasool
et al. [RA15] also review existing code smell detection tools and reveal the challenges asso-
ciated with them. A few studies [AD15, MT04] provide an extensive coverage to techniques
available for refactoring smells.

In this chapter, we thoroughly explore the resources related to smells that were pub-
lished between the years 1999 – 2016 and present the current knowledge in a synthesized
and consolidated form. Additionally, our goal is to identify challenges in the present knowl-
edge and find opportunities to overcome them.

This survey makes the following contributions to the field.

• The study provides a holistic status quo of various dimensions associated with
software smells. These dimensions include definition, classification, types, de-
tection methods, as well as causes and impacts of smells.

• It presents the state-of-the-art in the current research, reveal deficiencies in
present tools and techniques, and identifies research opportunities to advance
the domain.

Contributions

2.2 Method

In this section, we first present the objectives of this literature review and derived research
questions. We illustrate the search protocol that we used to identify relevant studies. The
search protocol includes not only the steps to collect the initial set of studies, but also in-
clusion and exclusion criteria that we apply on the initial set of studies to obtain a filtered
set of primary studies.

10 / 168 2.2. METHOD

2.2.1 Research objectives and questions

The goal of this study is to provide a consolidated yet extensive overview of software
smells covering their definition, types, causes, detection methods, and impact on var-
ious aspects of software development.

Research objectives

In this study, we address the following research questions:

LR-RQ1 What is the definition of a software smell?
We aim to understand how the term “smell” is defined by various researchers. We
infer basic defining characteristics and types of smells.

LR-RQ2 How do smells get introduced in software systems?
We explore the reasons that cause smells in software systems.

LR-RQ3 How do smells affect the software development processes, artifacts, or people?
We present the impact of smells on software systems. Specifically, we study impacts
of smells on processes, artifacts, and people.

LR-RQ4 How do smells get detected?
We discuss the techniques employed by researchers to identify smells.

LR-RQ5 What are the open research questions?
We present the perceived deficiencies and the open research questions with respect
to smells, their detection, and their interpretations.

The purpose of the prefix LR (i.e., literature review), which is used along with research
questions labels, is to separate this set of research questions with other questions in the
thesis.

2.2.2 Literature search protocol

The literature search protocol aims to identify primary studies which form the basis of the
survey. Our search protocol has three phases:

1. We identify a list of relevant conferences and journals and manually search their pro-
ceedings.

2. We search seven well-known digital libraries.

3. We perform filtering and consolidation of the studies identified in the previous phases
and prepare a single library of relevant studies.

11 / 168 2.2. METHOD

2.2.2.1 Literature search – Phase 1

We identify a comprehensive list of conferences and journals based on papers published in
these venues related to smells. We manually search the proceedings of the selected venues
between the year 1999 and 2016. The start year has been selected as 1999 since the smell
metaphor was introduced in 1999. During the manual search, the following set of terms
were searched in the title of studies: smell, antipattern, quality, maintainability, maintenance,
and metric. All the studies containing at least one of the search terms in their title were
selected and recorded. Table 2.1 presents the selected conferences and journals along with
their corresponding number of studies selected in Phase 1.

The domain of refactoring is closely related to that of software smells. However, given
the vast knowledge present in the field of refactoring, it requires a separate study specifically
for software refactoring. Therefore, we consider work concerning refactoring outside the
scope of this study.

Table 2.1: Studies selected in the Phase 1

Venue Type #Studies
Automated Software Engineering Conference 24
Empirical Software Engineering Journal 61
Empirical Software Engineering and Measurement Conference 68
European Conference on Object-Oriented Program-
ming

Conference 2

Foundations of Software Engineering Conference 19
IEEE Software Journal 78
International Conference of Software Maintenance and
Evolution

Conference 220

International Conference on Program Comprehension Conference 38
International Conference on Software Engineering Conference 85
Journal of Systems and Software Journal 146
Mining Software Repositories Conference 28
Software Analysis, Evolution, and Reengineering /
European Conference on Software Maintenance and
Reengineering

Conference 135

Source Code Analysis and Manipulation Conference 22
Systems, Programming, Languages and Applications:
Software for Humanity

Conference 8

Transactions on Software Engineering Journal 83
Transactions on Software Engineering and Methodol-
ogy

Journal 11

Total selected studies in Phase 1 1028

12 / 168 2.2. METHOD

2.2.2.2 Literature search – Phase 2

In the second phase, we carried out search on seven well-known digital libraries. The terms
used for the search are: software smell, antipattern, software quality, maintainability, mainte-
nance, and software metric. We appended the term “software” to the search terms in order to
obtain more relevant results. Additionally, we apply filters such as “computer science” and
“software engineering” wherever it was possible and relevant to refine the search results.
Table 2.2 shows the searched digital libraries and corresponding number of selected studies.

Table 2.2: Studies selected in the Phase 2

Digital Library Number of studies
Google Scholar 196
SpringerLink 44
ACM Digital Library 108
ScienceDirect 40
Scopus 150
IEEE Xplore 151
Web of Science 58
Total selected studies in Phase 2 747

2.2.2.3 Literature search – Phase 3

In the third phase, we defined inclusion and exclusion criteria to filter out irrelevant studies
and to prepare a consolidated library. The inclusion/exclusion criteria are listed below.

Inclusion criteria

• Studies that discuss smells in software development, present a catalog of one of the
different types of software smells (such as code smells, test smells, and configuration
smells), produce factors that cause smells, or explore their impact on any facet of
software development (for instance, artifacts, people, or process).

• Studies introducing smell detection mechanisms or providing a comparison using any
suitable technique.

• Resources revealing the deficiencies in the present set of methods, tools, and practices.

Exclusion criteria

• Studies focusing on external (in-use) software quality or not directly related with soft-
ware smells.

• Studies that propose the refactoring of smells, or identifies refactoring opportunities.

• Articles comprising keynote, extended abstract, editorial, tutorial, poster, or panel
discussion (due to insufficient details and small size).

13 / 168 2.3. RESULTS AND DISCUSSION

• Studies whose full text is not available.

Each selected article from phase 1 or 2 went through a manual inspection of title, key-
words, and abstract. The inspection applied the inclusion and exclusion criteria leading to
inclusion or exclusion of the articles. We obtained 445 articles after completing the inspec-
tion and removing the duplicates. These articles are the primary studies that we studied in
detail. We took notes while studying the selected articles. We then mark all the relevant
articles for each research question and included them in the corresponding discussion.

We did not limit ourselves only to the primary studies. We included secondary sources
of information and articles as and when we spotted them while studying primary studies.
Therefore, although our primary studies belong to the period 1999 – 2016, due to the inclu-
sion of the secondary studies, we refer studies in this survey that were published before or
after the selected period. An interested reader may find the list of all the selected papers in
each phase online [SS17].

After we completed the detailed study, we categorized the resources based on the dimen-
sions of smells they belong to. Figure 2.1 provides an overview of the studied dimensions
of software smells; a number in brackets shows the number of associated references.

Figure 2.1: Overview of the study; a number in brackets shows the number of associated
references

2.3 Results and Discussion

In this section, we present our synthesized observations corresponding to each research
question addressed in this study.

14 / 168 2.3. RESULTS AND DISCUSSION

2.3.1 LR-RQ1: What is the definition of a software smell?

Webreak down the question into the following sub-questionswhere each sub-question deals
with precisely one specific aspect of software smells’ definition.

LR-RQ1.1 What are the defining characteristics of a software smell?

LR-RQ1.2 What are the types of smells?

LR-RQ1.3 How are the smells classified?

LR-RQ1.4 Are smells and antipatterns considered synonyms?

2.3.1.1 LR-RQ1.1: What are the defining characteristics of a software smell?

Kent Beck coined the term “code smell” [Fow99] and defined it informally as “certain struc-
tures in the code that suggest (sometimes they scream for) the possibility of refactoring”. Later,
various researchers gave diverse definitions of software smells. A complete list of defini-
tions of smells provided by various authors can be found in Appendix 6.3. Based on these,
we synthesize the following five possible defining characteristics of a software smell.

• Indicator: Authors define smells as an indicator to or a symptom of a deeper design
problem [MGDM10, Yam14, SSS14, dSS16].

• Poor solution: The literature describes smells as a suboptimal or poor solution [KVGS11,
KEA16, FBA11, ADPAG13, VEM02, CDMT14].

• Violates best practices: According to authors such as Suryanarayana et al. [SSS14]
and Sharma et al. [SFS16], smells violate recommended best practices of the domain.

• Impacts quality: Smells make it difficult for a software system to evolve and main-
tain [Yam14, KVGS11]. It is commonly agreed that smells impact the quality of the
system [JGHK13, MG07, ADPAG13, GPEM09, SFS16, SSS14].

• Recurrence: Many authors define smells as recurring problems [MAB+12b, PZ12,
KVGS11].

2.3.1.2 LR-RQ1.2: What are the types of smells?

Authors have explored smells in different domains and in different focus areas. Within
software systems domain, authors have focused on specific aspects such as configuration
systems, tests, andmodels. These explorations have resulted in various smell catalogs. Table
2.3 presents a summary of catalogs and corresponding references.

We have compiled an extensive catalog belonging to each focus area. Here, considering
the space constraints, we provide a brief catalog of code smells in Table 2.4. We have se-
lected the smells included in this table based on the popularity of the smells i.e., based on

15 / 168 2.3. RESULTS AND DISCUSSION

Table 2.3: Types of smells

Focus References
Implementation [Fow99], [ADPAG13],

[BMMM98], [FM13]
[AHTM11], [GKA+16]

Design [SSS14] [BGH+08]
Architecture [GPEM09], [BMMM98] [LK00]
Tests [GvDS13], [HJE+13] [Deu01]
Performance [Smi00], [SA14], [WHTK14]
Configuration systems [SFS16]
Database [Kar10]
Aspect-oriented systems [AFF14], [BGvS11]
Energy [VAPM13]
Models [EAM09], [DD16]
Services [PDMG14], [KŽ07], [PM15]
Usability [ACSS15]
Reuse [Lon01]
Web [NNN+12]

the number of times the smell has been studied in the literature. The comprehensive and
evolving taxonomy of software smells can be accessed online.1

Table 2.4: Common code smells

Code Smell /
References

Description

God class [Rie96] The god class smell occurs when a huge class which is sur-
rounded bymany data classes acts as a controller (i.e., takes most
of the decisions andmonopolises the functionality offered by the
software). The class defines many data members and methods
and exhibits low cohesion.
Related smells: Insufficient modularization [SSS14], Blob
[BMMM98], Brain class [VMDP14].

Feature
envy[Fow99]

This smell occurs when a method seems more interested in a
class other than the one it actually is in.

Shotgun surgery
[Fow99]

This smell characterizes the situation when one kind of change
leads to a lot of changes to multiple different classes. When the
changes are all over the place, they are hard to find, and it’s easy
to miss an important change.

Data class
[Fow99]

This smell occurs when a class contains only fields and possibly
getters/setters without any behavior (methods).
Related smells: Broken modularization [SSS14].

1http://www.tusharma.in/smells

http://www.tusharma.in/smells

16 / 168 2.3. RESULTS AND DISCUSSION

Table 2.4: Common code smells

Code Smell /
References

Description

Long
method[Fow99]

This smell occurs when a method is too long to understand.

Related smells: Godmethod [Rie96], Brainmethod [VMDP14].
Functional
decomposi-
tion[BMMM98]

This smell occurs when highly procedural and non-object-
oriented code is written in an object-oriented language.

Refused bequest
[Fow99]

This smell occurs when a subclass rejects some of the methods
or properties offered by its superclass.
Related smells: Rebellious hierarchy [SSS14]

Spaghetti code
[BMMM98]

This smell refers to an unmaintainable, incomprehensible code
without any structure. The smell does not exploit and prevents
the use of object-orientation mechanisms and concepts.

Divergent change
[Fow99]

Divergent change occurs when one class is commonly changed
in different ways for different reasons.
Related smells: Multifaceted abstraction [SSS14].

Long parameter
list[Fow99]

This smell occurs when a method accepts a long list of parame-
ters. Such lists are hard to understand and difficult to use.

Duplicate code
[Fow99]

This smell occurs when same code structure is duplicated tomul-
tiple places within a software system.
Related smells: Duplicate abstraction [SSS14], Unfactored hi-
erarchy [SSS14], Cut and paste programming [BMMM98].

Cyclically-
dependent
modularization
[SSS14]

This smell arises when two or more abstractions depend on each
other directly or indirectly.

Related smells: Dependency cycles [Mar01]
Deficient encap-
sulation [SSS14]

This smell occurs when the declared accessibility of one or more
members of an abstraction is more permissive than actually re-
quired.
Related smells: Excessive global variables [FM13].

Lava flow
[BMMM98]

This smell is characterized by a piece of code that nobody re-
members the purpose and usage, and is largely not utilized.
Related smells: Unutilized abstraction [SSS14].

Speculative gen-
erality [Fow99]

This smell occurs where an abstraction is created based on spec-
ulated requirements. It is often unnecessary that makes things
difficult to understand and maintain.
Related smells: Speculative hierarchy [SSS14]

Lazy class
[Fow99]

This smell occurs where a class is not doing enough i.e., it does
not realize a concrete responsibility.

17 / 168 2.3. RESULTS AND DISCUSSION

Table 2.4: Common code smells

Code Smell /
References

Description

Related smells: Unnecessary abstraction [SSS14].
Switch statement
[Fow99]

This smell occurs when switch statements that switch on type
codes are spread across the software system instead of exploiting
polymorphism.
Related smells: Unexploited encapsulation [SSS14], Missing
hierarchy [SSS14].

Primitive obses-
sion [Fow99]

This smell occurs when primitive data types are used where an
abstraction encapsulating the primitives could serve better.
Related smells: Missing abstraction [SSS14].

Swiss army knife
[BMMM98]

This smell arises when the designer attempts to provide all possi-
ble uses of the class and ends up in an excessively complex class
interface.
Related smells: Multifaceted abstraction [SSS14].

We further elaborate this research question to focus on the related work corresponding
to the investigations taken up in this thesis.

Quality Practices for Software Architecture
The topic of architecture smells and its impact on software development is a subject of in-
terest for software engineering community for many years. Garcia et al. [GPEM09] define
an initial set of architecture smells and prepare a catalog of architecture smells with their
mathematical definitions [Gar14]. These formal definitions are helpful in implementing
smell detection tools for architecture smells. Brown et al. [BMMM98] also document a set
of architecture smells in the enterprise settings.

Andrade et al. [dAAC14a] define a set of architecture smells with respect to Product
Line Architecture (pla). Mo et al. [MCKX15] identify a set of hotspot patterns, referring
as recurring architecture problems based on a combination of historical and architectural
information of software systems.

Yamashita et al. [YZFW15, YC13] empirically investigate the inter-smell relationships,
termed as collocated and coupled that mainly comprise design smells and a few implemen-
tation smells. One of the insights from their work is that the explanatory power of code
smell relationships need further investigations with complementary perspectives in order
to be deemed useful. Inter-smell relationships have also been leveraged to find optimal
smell-removing refactoring sequences [LMSN12].

Palomba et al. [Pal18] investigate the collocation (termed as co-occurrences) among 13
code (design and implementation) smells over multiple releases of 30 open source software
systems. Similarly, Walter et al. [WFF18] conduct an experimental study to explore the
collocation relationship among 14 code (design and implementation) smells across 92 java
applications. They explore the effect of application domain on these relationships. Both

18 / 168 2.3. RESULTS AND DISCUSSION

of these studies foresee the importance of smell collocations in identifying classes requir-
ing high maintenance effort, and developing appropriate refactoring approaches and smell
detection tools supporting collocation analysis.

It is believed that the software architecture is affected by the presence and criticality of
code anomalies or smells. Macia et al. [MGP+12] present an empirical study on the rela-
tionship between code anomalies and architecture degradation. They conclude that 50% of
the automatically detected code anomalies causes the architectural modularity problems.

Oizumi et al. [OGC+15, OGdSS+16] believe that the architecture problems are reflected
in source code through groups of code smells and study the impact of a number of code
smell agglomerations on architecture problems. Guimaraes et al. [GGC14, GVG+] conduct
a controlled experiment utilizing architecture blueprints to prioritize various types of code
smells based on their architecture relevance.

Martini et al. [MFBR18] conduct a case study based research on three architectural
smells employing questionnaires, interviews, and code inspections on four industrial soft-
ware projects. The main aim of this study is to identify and prioritize the architecture debt
with the help of architecture smells. The findings of this study acknowledge the adverse
effects of architecture smells, and emphasize on the unavailability of automatic smell detec-
tion tools. Le et al. [LLSM18] perform an empirical investigation on the nature and impact
of six architecture smells that most frequently appeared in eight Apache Software Founda-
tion open-source projects. They design detection algorithms for these smells and explored
relationships between issues and the architecture smells under study. The outcome of this
study states the negative impacts of architecture smells on maintenance effort in terms of
increased number of implementation issues and code commits.

Quality Practices in System Configuration Management
In the landscape of system configuration management, empirical studies on configuration
code written in languages such as Puppet [Pup18] and Chef [Che18] are scarce. Jiang et
al. [JA15] study the co-evolution of Puppet and Chef configuration files with source, test,
and build code. They analyze the software repositories of 256 OpenStack projects and distin-
guish files as infrastructure, which contain configuration code in Puppet or Chef language,
production, build, and test. They find that configuration code comes in large files, changes
more frequently, and presents tight coupling with test files.

Puppet Forge [Pup16b] — the repository of Puppet modules, provides an evaluation of
configuration code quality through a quality score based on three aspects: code quality
score provided by Puppet-Lint [Pup16c], compatibility with Puppet, and metadata quality.
Metadata quality is subject to a set of guidelines that metadata files should adhere to.

Sonar-Puppet [Pup16a] is a SonarQube [Son16] plug-in that has numerous rules to detect
quality violations in Puppet code; most of the rules applied by Sonar-Puppet are common
with Puppet-Lint. Although the quality score provides useful and quick feedback to Puppet
code authors, it is not near to a comprehensive code analysis from the IaC point of view.

In addition, various authors have published their ideas describing best practices for con-
figuration code in the form of blog-posts, articles, and technical talks [Lar16a, Lar16b, Sty16,

19 / 168 2.3. RESULTS AND DISCUSSION

Lar16c].

Quality Practices in Database Applications
There is scant research that explores the quality characteristics of database code. Kar-
win [Kar10] presents a comprehensive catalog of database antipatterns drawn from industry
experience. He organizes antipatterns in four categories: logical database design, physical
database design, query, and application development antipatterns.

Authors have attempted studies to explore the quality aspect of database code. Brink et
al. [BLV07] discuss the challenges in extracting sql statements from the host source code
and present a method to extract and distil sql statements. The study provides a set of basic
metrics concerning databases such as number of tables and nested queries. Chen [Che15]
proposes strategies for reducing the impedancemismatch between the relational and object-
oriented models in order to improve database performance and integrity.

The knowledge and experience accumulated in popular question and answer sites can
be leveraged to help developers avoid smells in sql queries. Nagy et al. [NC15] mine Stack
Overflow questions that are relevant to sql queries. The study extracts sql error patterns
as a first step towards a recommendation system that aids developers to construct correct
queries. Eessaar [EV15] also discusses a few heuristics that can be employed to detect some
of the database smells outlined by Karwin [Kar10]. Many authors have explored object-
relational mapping in the context of their implications on application design [TGPM17] and
performance [CSJ+14].

2.3.1.3 LR-RQ1.3: How are the smells classified?

An appropriate classification is required to better comprehend a long list of smells based on
their characteristics. We collected, categorized, inferred, and synthesized the following set
of meta-classification of software smells.

• Effect-based smell classification: Mäntylä et al. [MVL03] classified smells based
on their effects on software development activities. The categories provided by the
classification include bloaters, couplers, and change preventers.

• Principle-based smell classification: Samarthyam et al. [SSSG13] and Suryanarayana
et al. [SSS14] classified design smells based on the primary object-oriented design
principles that the smells violate. The principle-based classification divided the smells
in four categories namely: abstraction, modularization, encapsulation, and hierarchy
smells.

• Artifact characteristics-based smell classification: Wake [Wak03] proposed a
smell classification based on characteristics of the types (i.e., classes or interfaces).
Categories such as data, interfaces, responsibility, and unnecessary complexity are in-
cluded in his classification. Similarly, Karwin [Kar10] classified sql antipatterns in
the following categories — logical database design, physical database design, query,
and application development antipatterns.

20 / 168 2.3. RESULTS AND DISCUSSION

• Granularity-based smell classification: Moha et al. [MGDM10] classified smells
using a two-level classification. At first, a smell is classified in either inter-class and
intra-class category. The second level of classification assigns non-orthogonal cate-
gories i.e., structural, lexical, andmeasurable to the smells. Similarly, Brown et al. [BMMM98]
discussed antipatterns classified in three major categories — software development,
software architecture, and software project management antipatterns.

Kenneth Bailey [Bai94] discusses a few desirable properties of a classification. By
applying them in the context of our study, we propose that an ideal classification of
smells must exhibit the following properties.

• Exhaustive: classify all the considered smells,

• Simple: classify smells within the scope and granularity effortlessly,

• Consistent: produce a consistent classification even if it carried out by different
people, and

• Coherent: produce clearly distinguishable categories without overlaps.

Desirable properties of a classification

We encourage authors that propose a classifications, in general within software engi-
neering context or specifically for smells, adhere to the above-mentioned properties.

2.3.1.4 LR-RQ1.4: Are smells and antipatterns considered synonyms?

Software engineering researchers and practitioners often use the terms “antipattern” and
“smell” interchangeably. Specifically, authors such as Palma et al. [PMG13], Palomba et
al. [PNT+15], and Linares et al. [LVKM+14] use both the terms as synonyms. For instance,
Linares et al. [LVKM+14] assert this notion explicitly — “…we use the word “smells” to refer
to both code smells and antipatterns, …”

Some authors treat antipatterns and smells as quality defects at different granularity.
For example, Moha et al. [MG07, MGDM10] defined design defects as antipatterns at design
granularity and as smells at implementation granularity.

Andrew Koenig [Koe95] coined the term “antipatterns” in 1995 and defined it as follows:
“An antipattern is just like pattern, except that instead of solution it gives something that looks
superficially like a solution, but isn’t one”. Hallal et al. [HAT+04] also describe antipatterns
in this vein — “something that looks like a good idea, but which backfires badly when applied”.
Based on Koening’s definition, our following interpretation makes antipatterns fundamen-
tally different from smells — antipatterns get chosen but smells occur, mostly inadvertently.
An antipattern is chosen in the assumption that the usage will bring more benefits than
liabilities whereas smells get introduced due to the lack of knowledge and awareness most
of the times.

21 / 168 2.3. RESULTS AND DISCUSSION

Brown et al. [BMMM98] specify one key characteristic of antipatterns as one “…that
generates decidedly negative consequences.” This characteristic makes antipatterns signifi-
cantly different from smells — a smell is considered as an indicator (refer Section 2.3.1.1)
of a problem (rather than the problem itself) whereas antipatterns bring decidedly negative
consequences.

An antipattern may lead to smells. For instance, a variant of Singleton introduces sub-
type knowledge in a base class leading to cyclic hierarchy [SSS14] smell in the code [FDW+16].
Further, the presence of smells may indicate that a certain practice is an antipattern rather
than a recommended practice in a given context. For example, the Singleton pattern makes
an abstraction difficult to test and hence introduces test smells; the presence of test smells
helps us identify that the employed pattern is deteriorating the quality more than helping
us solving a design problem.

We can draw the following implications from the above-discussed research question.

• We found that smells may occur in various stages of software development and
impair many dimensions of software quality of different artifact types. This im-
plies that software developers should adopt practices to avoid smells at different
granularities, artifacts, and quality dimensions at all stages of software develop-
ment.

• We identified the core characteristics of software smells. This can help the re-
search community to identify smells even when they are not tagged as smells.
For example, it is a recommended practice to avoid accessing external dependen-
cies, such as a database, in a unit test [Bec02]. A code fragment violating this
recommended practice shows presence of code smells as the fragment exhibits
properties violates best practices and impacts quality (maintainability and per-
formance) of a smell. Therefore, such a violation of the recommended practice
could be identified as a test smell despite not being referred to as a smell.

• We elaborated on the distinction between antipatterns and smells. This distinc-
tion can be further explored in future research on these topics.

Implications

2.3.2 LR-RQ2: How do smells get introduced in software systems?

Authors have explored factors that introduce smells in software systems. We classify such
causal factors into the following consolidated list.

• C1: Lack of skill or awareness: A major reason that cause smells in software sys-
tems is poor technical skills of developers and lack of awareness towards writing high
quality code. Many authors [SSS14, MBC14, CMRP16, TAV13] have pointed out this
cause in their studies.

22 / 168 2.3. RESULTS AND DISCUSSION

• C2: Frequently changing requirements: Certain design decisions are made to
fulfil the requirements at hand; however, frequent changes in requirements impair
the effective decision making and introduce smells [MBC14, LR15].

• C3: Language, platform, or technology constraints: Thecurrent literature [SJW08,
MBC14, KHRS12, LR15, CMRP16] shows that the chosen technology influences design
decisions and could be another reason that leads to smells.

• C4: Knowledge gap: Missing or complex documentation introduces a knowledge
gap which in turn could lead to smells in a software [LR15, MBC14].

• C5: Processes: The adopted processes may help avoid smells to occur or remain in
a software system. Therefore, an ineffective or a missing set of processes could also
become a cause for software smells [TAV13, SSS15].

• C6: Schedule pressure: Developers adopt a quick fix rather than an appropriate
solution in the scarcity of time. These quick fixes are a source of smells in software
systems [LR15, MBC14, SSS14].

• C7: Priority to features over quality: Managers consistently pressurise the devel-
opment teams to deliver new features quickly and ignore the quality of the system
[MBC14].

• C8: Politics: Organizational politics for control, position, and power influence the
software quality [CMRP16, LR15, SM06].

• C9: Team culture: Many authors [AGJ08, CMRP16, TAV13] have recognized the
practices and the culture prevailed within a team or an organization as a cause of
software smells.

• C10: Poor human resource planning: Poor planning of human resources required
for a software project may force the present development team to adopt quick fixes
to meet the deadlines [LR15].

A cause-based classification can help us understand the categories of factors that causes
smells. We propose an alternative to cause-based classification in the form of actor-based
classification. The actor-based classification assigns the responsibility of the causes to spe-
cific actor(s). The identified actors should either correct smells in the current project or learn
from the experience so as to avoid these smells in the future. For example, in the current
context, we consider three actors — manager (representing individuals in the management
hierarchy), technical lead (the person leading the technical efforts of a software development
team), and a software developer. Table 2.5 presents the classification of causes following the
actor-based classification scheme. Such a classification can help us in identifying the ac-
tionable tasks. For example, if the skill or awareness of software developers is lacking, the

23 / 168 2.3. RESULTS AND DISCUSSION

Table 2.5: Actor-based Classification of Smells Causes

Actor\Causes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Manager X X X X X
Technical lead X X X X X X
Developer X X X

actor-based classification suggests that developers as well as their technical-leads are re-
sponsible to take a corrective action. Similarly, if appropriate processes are not in-place, it
is the responsibility of the technical-lead to deploy them.

The above discussed roles and responsibility assignment is an indicative example. The
classification has to be adapted based on the team dynamics and the context. For instance,
the roles could differ in software development teams that follow different development
methods (e.g. agile, traditional waterfall, and hybrid). Furthermore, some development
teams are mature to take collective decisions whereas some teams have roles such as scrum
master to take decisions that impact the whole team.

The above exploration consolidates factors reported in the literature that cause smells.
It would be interesting to observe their comparative degree of impact on software
smells. Further, we propose a classification that identifies the actors responsible to
correct or avoid the causes of specific smells. This explicit identification of responsible
actors is actionable; software development teams can improve code quality by making
the actors accountable and working with them to correct the underlying factors that
lead to specific smells.

Implications

2.3.3 LR-RQ3: How do smells affect the software development pro-
cesses, artifacts, or people?

Smells impact not only software product but also the processes and people working on
the product. Table 2.6 summarizes the impact of smells on software product, process, and
people.

Smells have multi-fold impact on the artifacts produced in the software development
process and associated quality. Specifically, smells impact maintainability, reliability, testa-
bility, performance, and change-proneness of the software. Further, smells also increase
effort (and hence cost) required to produce a software.

Presence of excessive amount of smells in a product may influence the outcome of a
process; for instance, a high number of smells in a piece of code may lead to pull request
rejection [SVT16].

A high number of smells (and hence high technical debt) negatively impact the morale
and motivation of the development team and may lead to high attrition [TAV13, SSS14].

24 / 168 2.3. RESULTS AND DISCUSSION

Table 2.6: Impact of Smells

Entity Attribute References

Software product

Maintainability [BQO+12], [PR11], [MY12],
[YM13a], [Yam14], [YM13b],
[SYKG16]

Effort/Cost [SYA+13], [SZV+13], [SDPAG13],
[MS16]

Reliability [JGHK13], [HZBS14], [ZSSS11],
[BQO+14], [MNK+02], [KDPGA12]

Change proneness [OCBZ09], [KDPGA12], [ZSSS11],
[KDPG09]

Testability [SDPAG13]
Performance [CSJ+14], [HMR16], [SA14]

Software development [SVT16]
Processes

People Morale and motivation [TAV13], [SSS14]
Productivity [TAV13]

The above exploration reveals that impact of smells on certain aspects has not been
studied in detail. For example, the impact of smells on testability of a software system
and productivity of a software development team have been studied only by one study
each. Further research in this area can quantify the degree of the smells’ impact on
diverse product and process quality aspects alongwith the corresponding implications.

Implications

2.3.4 LR-RQ4: How do smells get detected?

A large body of knowledge exists to detect software smells. Smells have been detected in
many studies by employing various techniques. We classify the smell detection strategies
in five broad categories; we describe these categories below. Figure 2.2 shows an abstract
layered process flow that we have synthesized by analyzing existing approaches to detect
smells using the five categories of smell detection.

1. metric-based smell detection: A typical metric-based smell detectionmethod takes
source code as the input, prepares a source code model, such as an ast (Abstract
Syntax Tree), (step 1.1 in the figure 2.2) typically by using a third-party library, detects
a set of source code metrics (step 1.2) that capture the characteristics of a set of smells,
and detects smells (step 1.3) by applying a suitable threshold [Mar05].

For example, an instance of the god class smell can be detected using the following set
of metrics: wmc (Weighted Methods per Class), atfd (Access To Foreign Data), and
tcc (Tight Class Cohesion) [Mar04, VMDP14]. These metrics are compared against
pre-defined thresholds and combined using logical operators. Apart from these, the

25 / 168 2.3. RESULTS AND DISCUSSION

< > Source code
(or source artifact)

H
is

to
ric

al

in
fo

rm
at

io
n

M
at

he
m

a
-ti

ca
l

m
od

el

Ex
is

tin
g

ex
am

pl
es

f(x)

f(x)f(x)f(x)

Populated
model

Machine learning
algorithm

Detection
model

Source code
model

Rules/Heuristics

Metrics

Optimization
algorithm

<!> Smells

Ex
is

tin
g

ex
am

pl
es

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

4.1 4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.52.4

Metric-based

Rule/Heuristic-based

History-based

Machine learning-based

Optimization-based

1.s

2.s

4.s

5.s

3.s

Figure 2.2: A layered overview of smell detection methods. Each detection method starts
from the code (or other source artifact) and goes through various steps to detect smells. The
direction of the arrows shows the flow direction and annotations on the arrows show the
detection method (first part) and the step number (second part).

community frequently uses other metrics such as noc (Number of Children), nom
(Number of Methods), cbo (Coupling Between Objects), rfc (Response For Class),
and lcom (Lack of Cohesion of Methods) [CK94] to detect other smells.

2. Rules/Heuristic-based smell detection: Smell detection methods that define rules
or heuristics [MGDM10] (step 2.2 in the figure 2.2) typically takes source code model
(step 2.1) and sometimes additional software metrics (step 2.3) as inputs. They detect
a set of smells when the defined rules/heuristics get satisfied.

There are many smells that cannot be detected by the currently available metrics
alone. For example, we cannot detect rebellious hierarchy, missing abstraction, cyclic
hierarchy, and empty catch block smells using commonly used metrics. In such cases,
rules or heuristics can be used to detect smells. For example, the cyclic hierarchy
[SSS14] smell (when the supertype has knowledge about its subtypes) is detected by
defining a rule that checks whether a class is referring to its subclasses. Often, rules

26 / 168 2.3. RESULTS AND DISCUSSION

or heuristics are combined with metrics to detect smells.

3. History-based smell detection: Some authors have detected smells by using source
code evolution information [PBDP+15]. Such methods extract structural informa-
tion of the code and how it has changed over a period of time (step 3.1 in the figure
2.2). This information is used by a detection model (step 3.2) to infer smells in the
code. For example, by applying association rule mining on a set of methods that have
been changed and committed often to the version control system together, divergent
change smell can be detected [PBDP+15].

4. Machine learning-based smell detection: In the recent times, machine learning-
based smell detection methods have attracted software engineering researchers. Var-
ious machine learning methods such as Support Vector Machines [MAB+12b], and
Bayesian Belief Networks [KVGS09] have been used to detect smells. A typical ma-
chine learningmethod starts with amathematical model representing the smell detec-
tion problem (step 4.1 in the figure 2.2). Existing examples (step 4.2) and source code
model (step 4.3 and 4.4) could be used to instantiate a concrete populated model. The
method results in a set of detected smells by applying a chosenmachine learning algo-
rithm (step 4.5) on the populated model. We elaborate on the machine learning-based
methods in the next sub-section in greater detail.

5. Optimization-based smell detection: Approaches in this category apply optimiza-
tion algorithms such as genetic algorithms [OKKI15] to detect smells. Such methods
apply an optimization algorithm on computed software metrics (step 5.4 in the figure
2.2) and, in some cases, existing examples (step 5.1) of smells to detect new smells in
the source code.

Among the surveyed papers, we selected all the papers that employ a smell detection
mechanism. We classify these attempts based on the employed smell detection method.
Table 2.7 shows existing attempts to identify smells using one of the smell detection meth-
ods. The table also shows number of smells detected by each of the method and target
language/artifact.

Table 2.7: Smell Detection Methods and Corresponding References

Smell detection
method

Reference #Smells Languages/ Artifacts

metric-based

[DPXT13] 1 Java
[Mar05] 10 Java, C++
[Mun05] 2 Java
[SLT06] 5 Java
[VRDBDR07] 2 Java
[MHB10] 1 Java
[OKAG10] 1 Java

27 / 168 2.3. RESULTS AND DISCUSSION

Table 2.7: Smell Detection Methods and Corresponding References

Smell detection
method

Reference #Smells Languages/ Artifacts

[MGvS10] 11 Java
[FBA11] 5 UML Diagrams
[BGvS11] 7 Aspects-oriented sys-

tems
[SA13] 3 Java
[FM13] 13 JavaScript
[VMDP14] 10 Java
[PPF+14] 2 Java
[APFC15] 3 NA
[FSMS15] 1 C
[Non15] 1 Java
[VVDP+16] 10 JavaScript
[OCBZ09] 2 Java
[KVGS09] 1 Java
[BBEAM10] 1 Java
[KVGS11] 3 Java
[MAB+12b] 4 Java
[CMC15] 1 Java

Machine learning-based

[MKMD16] NA Java
[FS15] 3 Java

History-based
[PBDP+15] 5 Java
[Ram10] 5 C
[EAM09] 8 Use-case Model
[AHTM11] 8 C++
[FTC07] 1 Java
[TCC08] 1 Java
[TC11] 1 Java
[CMRT10] 4 UML Models
[ABT15] 1 UML Models
[PPDL+16] 5 Java

Rule/Heuristics-based

[LCCY13] 1 Java
[PDMG14] 8 REST APIs
[MGDM10] 4 Java
[TK11] 6 Palladio Component

Model
[ADPAG13] 17 Java
[SMT16] 30 C#

Optimization-based

[KKS+14] 8 Java

28 / 168 2.3. RESULTS AND DISCUSSION

Table 2.7: Smell Detection Methods and Corresponding References

Smell detection
method

Reference #Smells Languages/ Artifacts

[SKBD14] 7 Java
[GEBK15] 3 Java
[OKKI15] 5 XML (WSDL)

Each detection method comes with a set of strengths and weaknesses. metric-based
smell detection is convenient and relatively easy to implement; however, as discussed be-
fore, one cannot detect many smells using only commonly known metrics. Another im-
portant criticism of metric-based methods is their dependence on choosing an appropriate
set of thresholds, which is a non-trivial challenge. Rule/Heuristic-based detection meth-
ods expand the horizon of metric-based detection by strengthening them with the power
of heuristics defined on source code entities. Therefore, rule/heuristic-based methods com-
bined with metrics offer detection mechanisms that can reveal a high proportion of known
smells. History-based methods have a limited applicability because only a few smells are
associated with evolutionary changes. Therefore, a source code entity (such as a method
or a class) that has not necessarily evolved in a certain way to suffer from a smell cannot
be detected by history-based methods. Machine learning approaches depend heavily on
training data and the lack of such training datasets is a concern [KVGS09]. Also, it is still
unknown whether machine learning-based detection algorithms can scale to the large num-
ber of known smells. Further, optimization-based smell detectionmethods depend onmetric
data and corresponding thresholds. This fact makes them suffer from limitations similar to
metric-based methods.

2.3.4.1 Machine learning techniques on source code

In this section, we present an introduction to deep learning andmachine learning techniques
applied on source code including code smells detection.

Introduction to deep learning
Machine learning is a subfield of artificial intelligence that trains solutions to problems
rather thanmodeling them through hard-coded rules. In this approach, the rules that solve a
problem are not set a-priori; rather, they are inferred in a data-driven manner. In supervised
learning, a model is trained by being exposed to examples of instances of the problem along
with their expected answers and statistical regularities are drawn. The representations that
are learned from the data can in turn be applied and generalized to new, unseen data in a
similar context.

Deep learning is a subfield of machine learning that allows computational models com-
posed of multiple processing layers to learn representations of data with multiple levels of
abstraction [LBH15, GBCB16]. Even though the idea of layered neural networks with inter-
nal “hidden” units was already introduced in the 80s [RHW86], a breakthrough in the field

29 / 168 2.3. RESULTS AND DISCUSSION

came in 2006 by Hinton et al. [HOT06] who introduced the idea of learning a hierarchy
of features one level at a time. Ever since, and particularly during the course of the last
decade, the field has taken off due to the advances in hardware, the release of benchmark
datasets [DDS+09, KH09, LCB10], and a growing research focus on optimization methods
[Mar10, KB14]. Although deep learning architectures often consist of tens or hundreds of
successive layers, much shallower architectures may also fall under the category of deep
learning, as long as at least one hidden layer exists between the input and the output layer.

Deep learning architectures are being used extensively for addressing a multitude of
detection, classification, and prediction problems. Architectures involving layers of cnns
are inspired by the hierarchical organization of the visual cortex in animals, which consists
of alternating layers of simple and complex cells [FVE91, HW62]. cnns have been proven
particularly effective for problems of optical recognition and are widely used for image clas-
sification and detection [KSH12, SLJ+15, LBBH98], segmentation of regions of interest in
biological images [KBF16], and face recognition [LGTB97, PVZ+15]. Besides recognition
of directly interpretable visual features of an image, cnns have also been used for pattern
recognition in signal spectograms, with applications in speech recognition [SKS+15]. In
these applications the input data are given in the form of matrices (2d arrays) for repre-
senting the 2d grid layout of pixels in an image. 1d representations of data have been used
for applying 1d convolutions in sequential data such as textual patterns [JZ15] or temporal
event patterns [LYC17, AAK+17]. However, when it comes to sequential data, Recurrent
Neural Networks (rnns) [RHW86] have been proven superior due to their capability to
dynamically “memorize” information provided in previous states and incorporate it to a
current state. Long Short Term Memory (lstm) networks are a special kind of rnn that can
connect information spanning long-term intervals, thus capturing long-term dependencies.
lstms have been found to perform reasonably well on various data sets within the context of
representative applications that exhibit sequential patterns, such as speech recognition and
music modeling [GSK+17, GJM13]. In addition, they have been established as state-of-the-
art networks for a variety of natural language processing tasks; indicative applications in-
clude natural language generation [WGM+15], sentiment classification [WHZ+16, BPD17]
and neural machine translation [CvMG+14], among others.

Machine learning techniques on source code
The emergence of online open-source repository hosting platforms such as GitHub in re-
cent years has led to an explosion on the volumes of openly available source code along
with metadata related to software development activities; this bulk of data is often referred
to as “Big Code” [ABDS18]. As an effect, software maintenance activities have started lever-
aging the wealth of openly available data, the availability of computational resources, and
the recent advances in machine learning research. In this context, statistical regularities
observed in source code have revealed the repetitive and predictable nature of program-
ming languages, which has been compared to that of natural languages [HBS+12, Ern17].
To this end, problems of automation in natural language processing, such as identifica-
tion of semantic similarity between texts, translation, text summarisation, word prediction

30 / 168 2.3. RESULTS AND DISCUSSION

and language generation have been examined in parallel with the automation of software
development tasks. Relevant problems in software development include clone detection
[WTVP16,WL17], de-obfuscation [VCD17], languagemigration [NNN13], source code sum-
marisation [IKCZ16], auto-correction [PNSLB16, GPKS17], auto-completion [FGL12], gen-
eration [OFN+15, LBG+16, YN17], and comprehension [APG17].

On a par with equivalent problems in natural language processing, the methods em-
ployed to address these software engineering problems have switched from traditional rule-
based and probabilistic n-gram models to deep learning methods. The majority of the pro-
posed deep learning solutions rely on the use of rnns which provide sophisticated mech-
anisms for capturing long term dependencies in sequential data, and specifically lstms
[HS97] that have demonstrated particularly effective performance on natural language pro-
cessing problems.

Alternative approaches to mining source code have employed cnns in order to learn
features from source code. Li et al. [LHZL17] have used a single-dimension cnns to learn
semantic and structural features of programs by working at the ast level of granularity and
combining the learned features with traditional hand-crafted features to predict software
defects. This method however incorporates hand-crafted features in the learning process
and is not proven to yield transferable results. Similarly, a one-dimensional cnn-based ar-
chitecture has been used by Allamanis et al. [APS16] in order to detect patterns in source
code and identify “interesting” locations where attention should be focused. The objective
of the study is to predict short and descriptive names of source code snippets (e.g., a method
body) given solely its tokens. cnns have also been used by Huo et al. [HLZ16] in order
to address the problem of bug localization. This approach leverages both the lexical infor-
mation expressed in the natural language of a bug report and the structural information of
source code in order to learn unified features. A more coarse-grain approach that also em-
ploys cnns has been proposed in the context of program comprehension [OAH+18] where
the authors use imagery rather than text in order to discriminate between scripts written in
two programming languages, namely Java and Python.

Code smells detection using machine learning techniques

Foutse et al. [KVGS09, KVGS11] use a Bayesian approach for the detection of smells.
Their study forms a Bayesian graph using a set of metrics and determines the probability
whether a class belongs to a smell or not. Similarly, Abdou et al. [MAB+12b, MAB+12a]
employ support vector machine-based classifiers trained using a set of 60 object-oriented
metrics for each class to detect design smells (blob, feature concentration, spaghetti code, and
swiss army knife). Furthermore, Sérgio et al. [BBEAM10] detect long method smell instances
by employing binary logistic regression. They use commonly used method metrics, such
as Method Lines of Code (mloc) and cyclomatic complexity as regressors. Bardez et al.
[BKG19] presents an ensemble method that combine outcome of multiple tools to detect
god class and feature envy smells. They identify a set of key metrics for each smell and feed
them to a cnn-based architecture. Fontana et al. [FPRZ16] compare performance of various

31 / 168 2.3. RESULTS AND DISCUSSION

machine learning algorithms in detecting data class, god class, feature envy, and long method.
However, machine learning techniques to detect smells are considered far from ma-

ture. In a recent study, Di Nucci et al. [NPT+18] note that the problem of detecting smells
still requires extensive research to attain a maturity that would produce results of practical
use. In addition, machine learning techniques (such as Bayesian networks, support vector
machines, and logistic regression) that have been applied so far require considerable pre-
processing to generate features for the source code, a substantial effort that hinders their
adoption in practice. Traditionally, researchers use machine-learning methods that require
extracting feature-sets from source code. Typically, code metrics are used as the feature
set for smell detection purposes. We perceive two shortcomings in such usage of machine-
learning methods for detecting smells. First, we need an external tool to compute metrics
for the target programming language on which we would like to apply the machine learn-
ing model. Those that have a metrics computation tool may deduce many smells directly
by combining these metrics [Mar04, SS18] and thus applying a machine-learning method is
redundant. Second and more importantly, we are limiting the machine learning algorithm
to use only the metrics that we are computing and feeding as feature-set. Therefore, the ma-
chine learning algorithm cannot observe any pattern that is not captured by the provided
set of metrics.

We identify five categories of smell detection mechanisms. An implication of the cate-
gorization for the research community is the positioning of new smell detection meth-
ods; the authors can classify their new methods as one of these categories or propose
a new smell detection method category.

Among the five types of smell detection methods, metric-based tools are the most
popular and relatively easier to develop. On the other hand, researchers are attracted
towardsmachine learning-basedmethods to overcome the shortcomings of other smell
detection methods such as the dependence on choosing appropriate threshold values
for metrics. However, many challenges remain in using machine learning techniques.
The availability of a standard training dataset and advancements in employing deep
learning models would encourage researchers to develop better smell detection tools
using machine learning approaches.

Implications

2.3.5 LR-RQ5: What are the open research questions?

Despite the availability of huge amount of literature on smells and associated aspects, we
perceive many opportunities to expand the domain knowledge.

1 False-positives and lack of context: Results produced by the present set of smell de-
tection tools are prone to false-positive instances [FDW+16, KVGS11].

• The major reason of the false-positive proneness of the smell detection methods
is that metrics and rule-based methods depend heavily on the metrics thresh-

32 / 168 2.3. RESULTS AND DISCUSSION

olds. The software engineering community has identified threshold selection
as a challenge [KKS+14], [FBA11]. There have been many attempts to identify
optimal thresholds [FFZY15, LLNL16, FBB+12]; however, the proneness to false-
positives cannot be eliminated in metrics and rule-based methods since one set
of thresholds (or a method to derive thresholds) do not apply in another context.

• Many authors have asserted that smell detection is a subjective process [ML06,
PBP+14, MHB08]. As Gil et al. [GL16] say — “Bluntly, the code metric values,
when inspected out of context, mean nothing.” Similarly, Fontana et al. [FDW+16]
list a set of commonly detected smells that solve a specific design problem in the
real-world.
We suggest that the smells identified using tools must go through an expert-
based scrutiny to finally tag them as quality problems. Essentially, the present
set of smell detectionmethods are not designed to take context into account. One
potential reason is that it is not easy to define, specify, and capture context. This
presents an interesting yet challenging opportunity to significantly improve the
relevance of detected smells.

• Another interesting concern related to smells in the context of false-positives
is that smells are indicative by definition and thus it is unfair to tag smells as
false-positive based on the context. As shown in Figure 2.3, a recorded smell
could be a false-positive instance (and thus not an actual smell) when it does
not fulfill the criteria of a smell by the definition of a smell. When the recorded
smell is not a false-positive instance, it could either be a smell which is not a
quality problem considering the context of the detected smell or it could be a
definite quality problem contributing to technical debt. This brings up the
interesting insight that researchers and practitioners need to perceive
smells (as indicators) differently from definite quality problems.

<!> Recorded
smell

< >

False positive

The recorded
smell is a smell

but not a
quality problem
considering the

context.

The detected smell is a
definite quality problem.

<!>

<!>

Is
recorded smell

an actual smell by
the definition of a

smell?

No

Is
recorded smell

not a quality problem
considering the

context?

Yes Yes

No

Figure 2.3: A recorded smell could be a false-positive instance, a smell that is not a quality
problem, or a definite quality problem.

For example, consider a tool reports an instance of data class smell in a software
system. As explained in Table 2.4, this smell occurs when a class contains only
data fields without any methods. A common practice is to tag the instance of a

33 / 168 2.3. RESULTS AND DISCUSSION

data class as a false-positive when it is serving a specific purpose in that con-
text [FDW+16]. However, we argue that rather than tagging the instance as a
false-positive (based on the context), we define smells as being separate from the
definite quality problems. A fowl smell in a restaurant may indicate something
is rotten, but can also accompany the serving of a strongly smelling cheese.
In a manual inspection, if we find that the class has one method apart from
data fields then the reported smell is a false-positive instance since it does not
fulfill the condition of a data class smell. On the other hand, if the class only
contains data fields without any method definition, it is a smell. As a developer,
if one considers the context of the class and infers that the class is being used,
for instance, as a dto (Data Transfer Object) [Fow02] the smell is not a quality
problem because it is the result of a conscious design decision. However, if the
above case does not apply and the developer is using another class (typically a
manager or a controller class) to access and manipulate the data members of the
data class, the identified smell is a definite quality problem.

2 Limited detection support for known smells: Table 2.8 shows all the smell detection
tools selected in this study and their corresponding supported smells. It is evident that
most of the existing tools support detection of a significantly smaller subset of known
smells. Researchers [PDLBO14, RA15, SMT16] have identified the limited support
present for identifying smells in the existing literature. The deficiency poses a serious
threat to empirical studies that base their research on a severely low number of smells.

34
/168

2.3.
RESU

LTS
A
N
D

D
ISC

U
SSIO

N

Table 2.8: Smell Detection Methods and supported smells

Re
fe
re
nc

es

Detection Method G
od

cl
as
s

Fe
at
ur

e
en

vy

Sh
ot
gu

n
su

rg
er
y

D
at
a
cl
as
s

Lo
ng

m
et
ho

d

Fu
nc

tio
na

ld
ec

om
po

si
tio

n

Re
fu
se
d
be

qu
es
t

Sp
ag

he
tti

co
de

D
iv
er
ge

nt
Ch

an
ge

Lo
ng

Pa
ra
m
et
er

Li
st

O
th
er

sm
el
ls

To
ta

ls
m

el
ls

[Mar05] metric-based X X X X X X 4 10
[Mun05] metric-based 2 2
[SLT06] metric-based X X X X X 0 5
[VRDBDR07] metric-based 2 2
[FTC07] Rule/Heuristic-based X 0 1
[TCC08] Rule/Heuristic-based 1 1
[KVGS09] Machine learning-based X 0 1
[EAM09] Rule/Heuristic-based 8 8
[OCBZ09] metric-based X X 0 2
[BBEAM10] Machine learning-based X 0 1
[MGDM10] Rule/Heuristic-based X X X 1 4
[MHB10] metric-based X 0 1
[Ram10] Rule/Heuristic-based X X 3 5
[OKAG10] metric-based X 0 1
[MGvS10] metric-based 11 11
[CMRT10] Rule/Heuristic-based 4 4
[TC11] Rule/Heuristic-based X 0 1
[KVGS11] Machine learning-based X X X 0 3

35
/168

2.3.
RESU

LTS
A
N
D

D
ISC

U
SSIO

N

Table 2.8: Smell Detection Methods and supported smells

Re
fe
re
nc

es

Detection Method G
od

cl
as
s

Fe
at
ur

e
en

vy

Sh
ot
gu

n
su

rg
er
y

D
at
a
cl
as
s

Lo
ng

m
et
ho

d

Fu
nc

tio
na

ld
ec

om
po

si
tio

n

Re
fu
se
d
be

qu
es
t

Sp
ag

he
tti

co
de

D
iv
er
ge

nt
Ch

an
ge

Lo
ng

Pa
ra
m
et
er

Li
st

O
th
er

sm
el
ls

To
ta

ls
m

el
ls

[BGvS11] metric-based 7 7
[FBA11] metric-based X X X 2 5
[TK11] Rule/Heuristic-based 6 6
[AHTM11] Rule/Heuristic-based 8 8
[MAB+12b] Machine learning-based X X X 1 4
[FM13] metric-based X X X 10 13
[SA13] metric-based X 2 3
[ADPAG13] Rule/Heuristic-based 17 17
[DPXT13] metric-based X 0 1
[LCCY13] Rule/Heuristic-based X 0 1
[VMDP14] metric-based X X X X X 5 10
[SKBD14] Optimization-based X X X X X X 1 7
[PPF+14] metric-based X X X 0 3
[KKS+14] Optimization-based X X X X X X X 0 7
[PDMG14] Rule/Heuristic-based 8 8
[APFC15] metric-based X X X 0 3
[GEBK15] Optimization-based X X X 0 3
[CMC15] Machine learning-based X 0 1

36
/168

2.3.
RESU

LTS
A
N
D

D
ISC

U
SSIO

N

Table 2.8: Smell Detection Methods and supported smells

Re
fe
re
nc

es

Detection Method G
od

cl
as
s

Fe
at
ur

e
en

vy

Sh
ot
gu

n
su

rg
er
y

D
at
a
cl
as
s

Lo
ng

m
et
ho

d

Fu
nc

tio
na

ld
ec

om
po

si
tio

n

Re
fu
se
d
be

qu
es
t

Sp
ag

he
tti

co
de

D
iv
er
ge

nt
Ch

an
ge

Lo
ng

Pa
ra
m
et
er

Li
st

O
th
er

sm
el
ls

To
ta

ls
m

el
ls

[PBDP+15] History-based X X X X 1 5
[FSMS15] metric-based X 0 1
[FS15] History-based X X 1 3
[OKKI15] Optimization-based 5 5
[Non15] metric-based X 0 1
[ABT15] Rule/Heuristic-based X 0 1
[PPDL+16] Rule/Heuristic-based X X X 2 5
[VVDP+16] metric-based X X X X X 5 10
[SMT16] Rule/Heuristic-based X X X X X X X 23 30
[MKMD16] Machine learning-based X X X X X 0 5

37 / 168 2.3. RESULTS AND DISCUSSION

Figure 2.4 shows number of studies detecting a specific smell sorted by the number of
studies detecting the smells (the top 20 most frequently detected smells). The figure
shows that god class smell has been detected the most in the smells literature. On
the other hand, some of the smells have been detected only by one study; these smells
include parallel inheritance hierarchy [PBDP+15], closure smells [FM13], isp violation
[Mar05], hub-like modularization [SMT16], and cyclic hierarchy [SMT16]. Obviously,
there are many other smells that have not been detected by any study. The importance
and relevance of a smell cannot be determined by its popularity. Hence, the research
community also needs to explore the relatively less commonly detected smells and
strengthen the quality analysis.

25

14

9 9 9
8

7
6

5
4

3 3 2 2 2 2 2 2 2 2

Go
d	
cl
as
s\
bl
ob

Fe
at
ur
e	
en
vy

Sh
ot
gu
n	
su
rg
er
y

Da
ta
	cl
as
s

Lo
ng
	m

et
ho
d

Fu
nc
tio

na
l	d

ec
om

po
sit
io
n

Re
fu
se
d	
be
qu
es
t

Sp
ag
he
tti
	c
od
e

Di
ve
rg
en
t	C

ha
ng
e

Lo
ng
	P
ar
am

et
er
	Li
st

Br
ai
n	
m
et
ho
d

La
zy
	cl
as
s

Br
ai
n	
cl
as
s

Di
sp
er
se
	co

up
lin
g

In
te
ns
iv
e	
co
up
lin
g

Tr
ad
iti
on
	b
re
ak
er

Sw
iss
	a
rm

y	k
ni
fe

La
va
	fl
ow

Em
pt
y	
Ca

tc
h

Ex
ce
ss
iv
e	
gl
ob
al
	va

ria
bl
es

Nu
m
be

r	o
f	s
tu
di
es

Smells

Figure 2.4: The number of studies detecting a specific smell

Further, academic researchers have concentrated heavily on a single programming
language, namely Java [RA15]. The 46 smell detectionmethods for source code shown
in Table 2.8 have their targets distributed as follows: 31 for Java, six for models, two
for C, two for C++, two for JavaScript, one for C#, and one each for XML and REST
APIs. Expanding the smell detection tools to support a wide range of known smells
and diverse programming languages and platforms is another open opportunity.

3 Immature application of machine learning techniques for smell detection: Re-
centlymany researchers attemptedmachine learning techniques to detect smells [KVGS09,
KVGS11, MAB+12b, MAB+12a]. However, machine learning techniques to detect
smells are considered far from mature. In a recent study, Di Nucci et al. [NPT+18]
note that the problem of detecting smells requires much more research to attain a ma-
turity. There are two shortcomings in the current usage of machine-learning methods
for detecting smells. First, heavy feature engineering — current techniques typically

38 / 168 2.3. RESULTS AND DISCUSSION

use traditional code metrics as the feature-set. Some authors use customized metrics
such as distance metrics used by Liu et al. [LXZ18]. Therefore, they need an exter-
nal tool to compute the set of metrics for the target programming language. If one
has a metrics computation tool, she may deduce many smells by combining these
metrics [Mar04, SS18] and thus applying a machine-learning method is redundant es-
pecially when the human factors and context have not been taken into account during
the training process. Second and more importantly, existing attempts limit the ma-
chine learning algorithm to use only the metrics that are fed as feature-set. The main
premise of using machine-learning method is to bring context and human factor into
consideration. However, feeding an algorithm with only metrics, that does not cover
either the context or the human factors, defies the purpose of applying machine learn-
ing algorithms.

4 Inconsistent smell definitions and detection methods: The abundance of the smell
literature has produced inconsistencies in the definition of smells and their detection
methods. For example, god class is one of the most commonly researched smells;
however, researchers have defined it differently. Riel [Rie96] has defined it as the class
that tend to centralize the knowledge in the system. On the other hand, Gabriela et
al. [CMC15] defined it as a class that has too manymethods andMazeiar et al. [SLT06]
specified it as the class which is used more extensively than others.

Similarly, based on their description and interpretation, their detection methods also
differ significantly and they detect smells inconsistently. Furthermore, in some cases,
identical interpretation of smells may also produce different results due to the varia-
tion in chosen thresholds of employed metrics.

Even further, metrics tools show inconsistent results even for well-known metrics
such as lcom, cc, and loc. For example, one tool might implement one variation of
lcom and another tool may realize another or custom variation of the metric while
both the tools refer to the metric with the same name. Such inconsistencies in smell
definition and their detection methods have been identified by the community [RA15,
AFBZ12, SSSG13].

It is, therefore, important and relevant to establish a standard with respect to smell
definition, their implementation, as well as commonly used metrics.

5 Impact of smells on productivity: In Section 2.3.3, we present the available literature
that discusses the impact of smells on software quality as well as processes and people.
It is believed that smells affect mainlymaintainability and poormaintainability in turn
impacts productivity of the development team. As shown in Section 2.3.3, the current
literature draws connection between impact of smells and maintainability. However,
the impact of smells on productivity is not yet explored to a sufficient detail. Other
researchers [ZHB11] have also identified the need to better understand the impact of
smells. We believe that establishing an explicit and concrete relation between smells
and productivity will enhance the adoption of the concepts concerning smells among

39 / 168 2.4. CONCLUSIONS

practitioners.

In the above discussion, we elaborated on the inherent deficiencies in the present set of
smell detectionmethods. These deficiencies include lack of context and a small number
of detectable smells on a very small number of platforms. This analysis clearly calls
for effective and widely-applicable smell detection tools and techniques. Inconsistent
smell definitions and detectionmethods indicate the need to set up a standard for smell
definitions as well as verified datasets of smells.

Implications

2.4 Conclusions
This survey presents a synthesized and consolidated overview of the current knowledge in
the domain of software smells. We extensively searched a wide range of conferences and
journals for the relevant studies published from year 1999 to 2016. The studies selected
in all the phases of the selection, an exhaustive smell catalog, as well as the program that
generates the smell catalog are made available online.2

Our study has explored and identified the following dimensions concerning software
smells in the literature.

• We reveal five defining characteristics of software smells: indicator, poor solution,
violates best practices, impacts quality, and recurrence.

• We identify and catalog a wide range of smells (more than 250 at the time of writing
this thesis) that we made available online and classify them based on 14 focus areas.

• We classify existing smell classifications into four categories: effect-based, principle-
based, artifact characteristic-based, and granularity-based.

• We curate ten factors that cause smells to occur in a software system. We also classify
these causes based on their actors.

• We categorize existing smell detectionmethods into five groups: metric-based, rules/heuristic-
based, history-based, machine learning-based, and optimization-based.

• We observe that the existing literature does not differentiate between a smell (as an
indicator) and a definite quality problem.

2https://github.com/tushartushar/smells, http://www.tusharma.in/
smells/

https://github.com/tushartushar/smells
http://www.tusharma.in/smells/
http://www.tusharma.in/smells/

40 / 168 2.4. CONCLUSIONS

We identify the following gaps and research opportunities in the present set of tools
and techniques.

• The community believes that the existing smell detection methods suffer from
high false-positive rates. Also, existing methods cannot define, specify, and cap-
ture the context of a smell.

• The currently available tools can detect only a very small number of smells.
Further, most of the tools largely only support the Java programming language.

• The machine learning mechanism used to detect smells do not exploit the power
of the machine/deep learning are considered far from the maturity.

• Existing literature has produced inconsistent smell definitions. Similarly, smell
detection methods and the corresponding produced results are highly inconsis-
tent.

• The current literature does not establish an explicit connection between smells
and their impact on productivity of a software development team.

Research opportunities

Chapter 3

Methodology

Research formalizes curiosity;
methodology formalizes research … in a context.

In this chapter, we shed light on the thesis objectives, define scope of each subsequent
experiment by specifying research questions, and provide an overview of the study design.
We first present the study design for production source code, then we elaborate on the study
to detect smells using deep learning. Further, we describe our study design for maintain-
ability analysis for configuration code and database schema code.

3.1 Research Objectives

The problem of maintainability analysis for traditional production source code and other
sub-domains of software needs to be broken into smaller experiments in order to do justice
to each aspect of the larger investigation. In the next sub-sections, we elaborate on the
individual experiments that helped us realize the bigger goal.

To separate the discussion, each research question is prefixed with a one or two letter
acronym. For research questions investigating maintainability in production source code,
we put P as prefix. Similarly, we use D for deep learning, C for maintainability analysis for
configuration code, and DB for database schema quality analysis related research questions.

3.1.1 Maintainability Analysis for Production Source Code

The first experiment concerns maintainability analysis for production code belonging to a
mainstream programming language i.e., C#. It involves analyzing source code and revealing

41

42 / 168 3.1. RESEARCH OBJECTIVES

aspects such as distribution of architecture, design, and implementation smells, relation-
ships such as correlation and collocation among the smells at different granularities, and
the relationship between project size and corresponding quality issues.

We formulated the following research questions towards the quality analysis goal of C#
projects.

P-RQ1. What is the distribution of implementation, design, and architecture smells
in C# code?
We investigate the distribution of smells to find out whether there exists a set of im-
plementation, design, and architecture smells that is more prevalent in the analyzed
open-source repositories. The answer to this research questionmay caution the devel-
opers about a set of smells expected to have more chances of occurrence and prompts
them to take precautionary measures.

P-RQ2. Do the detected smell instances belonging to different granularities corre-
late?
We explore the correlation between smell instances arising at different granularities.
Specifically, we explore correlation between design and implementation, as well as
architecture and design smell instances. A strong correlation between kinds of code
smells would encourage us to understand the occurrence patterns and provide valu-
able insights into the similarity between these pairs.

Further, we also investigate the correlation between individual design smells and ar-
chitecture smells. This would help us to find out whether there exist specific types of
design smells that are strongly correlated to architecture smells.

P-RQ3. Is the principle of coexistence applicable to smells in C# projects?
It is commonly believed that patterns (and smells) co-exist [BMR+96a, SSS14] i.e., if
we find one smell, it is very likely that we will find many more smells around it. We
investigate the intra-category co-occurrences of a smell with other smells to find out
whether and to what degree the folklore is true.

P-RQ4. Does smell density depend on the size of the C# repository?
It is commonly believed that the complexity of a software system increases with the
size of the system. We investigate the relationship between the size of a C# repository
and associated smell density to find out how the smell density changes as the size of a
C# project increases. Smell density is a normalized metric that represents the average
number of smells identified per thousand lines of code.

P-RQ5. Are architecture smells collocated with design smells?

The question aims to explore whether architecture and design smell occur at the same
location (i.e., classes) within the source code. A positive result of the collocation anal-
ysis would establish a strong relationship between architecture and design smells.

Apart from exploring collocation cumulatively between both kinds of smells, the
question investigates the collocation relationships between individual pairs of design

43 / 168 3.1. RESEARCH OBJECTIVES

smells and architecture smells. This would help us to figure out whether and to what
extent specific design smells show collocation with architecture smells.

P-RQ6. Can the refactoring of design smells lead to fewer architecture smells?

In this research question, we figure out the impact of design smell refactorings on
architecture smells. It will reveal the degree of influence of design smells on archi-
tecture smells. A high influence will hint that by refactoring design smells we can
remove a high number of architecture smells. On the other hand, a low influence of
architecture smells will lead us to conclusion that we need to put effort to refactor
smells at each granularity separately.

C#

C#
C#

Research questions

Download C# repositories from
GitHub

Analyze C# code

Detected smells
Analyze smells to provide
answers to the research questions

Figure 3.1: Overview of the maintainability analysis study on C# code

Figure 3.1 shows the overview of the experiment. We define a set of aforementioned
research questions, select a set of repositories containing C# code by using RepoReapers
[MKCN17] and download them. We use Designite [SMT16] to analyze the downloaded
repositories and to detect implementation, design, and architecture smells. We analyze the
detected smells and perform distribution, correlation, and collocation analysis to address
the research questions.

3.1.2 Detecting Smells using Deep Learning

The goal of this research is to explore the possibility of applying state-of-the-art deep learn-
ing methods to detect smells. Further, this work inquires into the feasibility of applying
transfer-learning. Transfer-learning refers to the technique where a a learning algorithm

44 / 168 3.1. RESEARCH OBJECTIVES

exploits the commonalities between different learning tasks to enable knowledge transfer
across the tasks [BCV13]. Based on the above stated goals, we define the following research
questions to explore in this work.

D-RQ1. Is it possible to use deep learning methods to detect code smells? If yes,
which deep learning method performs superior?

We use cnn and rnn models in this exploration. For the cnn-based architecture, we
provide input samples in 1d and 2d format to observe the difference in their capabili-
ties due to the added dimension; we refer to them as cnn-1d and cnn-2d respectively.
In the context of this research question, we define the following hypotheses.

D-RQ1.H1 It is feasible to detect smells using deep learning methods.
The considered deep learning models are powerful mechanisms that have the
ability to detect complex patterns with sufficient training. These models have
demonstrated high performance in the domain of image processing [KSH12,
SLJ+15] and natural language processing [LPM15]. We believe we can lever-
age these models in the presented context.

D-RQ1.H2 cnn-2d performs better than cnn-1d in the context of detecting smells.
The rationale behind this hypothesis is the added dimensionality in cnn-2d. The
2d model might observe inherent patterns when input data is presented in two
dimensions that may possibly be hidden in one dimensional format. For in-
stance, a 2-d variant could possibly identify the nesting depth of a method easier
than its 1-d counterpart when detecting complex method smell.

D-RQ1.H3 An rnn model performs better than cnn models in the smell detection con-
text.
rnn are considered better for capturing sequential patterns and have the reputa-
tion to work well with text. Thus, taking into account the similarities that source
code and natural language share, rnn could prove superior than cnn models.

D-RQ2. Is transfer-learning feasible in the context of detecting smells? If yes, which
deep learning model exhibits superior performance in detecting smells when
applied in transfer-learning setting?
Transfer-learning is the capability of an algorithm to exploit the similarities between
different learning tasks and offering a solution of a task by transferring knowledge
acquired while solving another task. We would like to explore whether it is feasible
to train a deep learning model from samples of C# and predict the smells using this
trained model in samples of Java programming language.

We derive the following hypotheses.

D-RQ2.H1 It is feasible to apply transfer-learning in the context of code smell detection.
We train the deep learning models using C# code fragments and evaluate the trained
model using Java fragments. Given the high similarity in the syntax between the

45 / 168 3.1. RESEARCH OBJECTIVES

two programming languages, we believe that we may train the model from training
samples and use the trained model to classify smelly and non-smelly fragments from
our evaluation samples.

D-RQ2.H2 Transfer-learning performs inferior compared to direct-learning.
Direct-learning in the context of our study refers to the case where training and eval-
uation samples belong to the same programming language. We expect that the per-
formance of the models in the transfer-learning could be inferior to that compared
to direct-learning given both the problems are equally hard i.e., negative and positive
sample showing similar distribution.

C#

C#
C#

Research questions

Positive and negative samples

Tokenized
samples

Detected smells

Java
Java

Java

--

--

--

--

--

--

--

--

--

--

--

-- --

--

--

--

--

--

--

--

--

--

23 51
32 200
11 45 --

--

--

--

23 51
32 200
11 45

Learning data
generatorPreprocess

Tokenizer

</> CodeSplit

Deep learning
models

Code fragments

Figure 3.2: Overview of the Proposed Method

Figure 3.2 provides an overview of the experiment. We download 1,072 C# and 100
Java repositories from GitHub. We use Designite and DesigniteJava to analyze C# and Java
code respectively. We use CodeSplit to extract each method and class definition into sep-
arate files from C# and Java programs. Then the learning data generator uses the detected
smells to bifurcate code fragments into positive or negative samples for a smell—positive
samples contain the smell while the negative samples are free from that smell. Tokenizer
takes a method or class definition and generates integer tokens for each token in the source
code. We apply preprocessing operation, specifically duplicates removal, on the output of
Tokenizer. The processed output of Tokenizer is ready to feed to the neural networks.

3.1.3 Maintainability Analysis for Configuration Code

In the pursuit to extend the maintainability analysis, we carry out a study to analyze the
existing configuration code and evaluate the associated code quality to examine the existing
practices towards keeping configuration code maintainable.

46 / 168 3.1. RESEARCH OBJECTIVES

We formulated the following research questions towards the quality analysis goal of
configuration code.

C-RQ1. What is the distribution of maintainability smells in configuration code?
We investigate the distribution of configuration smells to find out whether there exists
a set of implementation and design configuration smells that occur more frequently
with respect to another set of configuration smells.

C-RQ2. What is the relationship between the occurrence of design configuration
smells and implementation configuration smells?
We study the instances of design configuration smells and implementation configu-
ration smells to discover the degree of co-occurrence between the two categories of
configuration smells.

C-RQ3. Is the principle of coexistence applicable to smells in configuration projects?
In traditional software engineering, it is said that patterns (and smells) co-exist as
“No pattern is an island” [BMR+96b] i.e. if we find one, it is very likely that we will
find many more around it [BMR+96b, SSS14]. We investigate the intra-category co-
occurrence of a smell with other smells to find out whether the folklore is true in the
context of configuration smells. Furthermore, we investigate whether all the smells
in each of the categories follow the principle with a same degree.

C-RQ4. Does smell density depend on the size of the configuration project?
We investigate the relationship between the size of a configuration project and associ-
ated smell density for both smell categories to find out how the smell density changes
as the size of the configuration project increases.

Research questions

Download 4621 Puppet
repositories

Analyze Puppet
code

Detected configuration
smells

Analyze smells to provide
answers to the research questions

Tools (Puppeteer
and PuppetLint)

Taxonomy of configuration
smells

Figure 3.3: Overview of the maintainability analysis study on configuration (Puppet) code

47 / 168 3.1. RESEARCH OBJECTIVES

Figure 3.3 provides an overview of the maintainability analysis study on configuration
smells. We collate best practices followed in IaC domain and define a taxonomy of con-
figuration smells. To detect the majority of implementation configuration smells, we use
Puppet-Lint [Pup16c]. Due to the lack of an existing tool that can detect design configura-
tion smells, we develop a tool namely Puppeteer for detecting the cataloged design config-
uration smells. We identify repositories containing Puppet code and download them from
GitHub [Git16]. We download 4,621 repositories containing 142,662 Puppet files and 8.9 mil-
lion lines of code and analyze themwith the help of Puppet-Lint and Puppeteer. We grouped
the information collected based on the data required to answer the research questions and
deduce our observations.

3.1.4 Maintainability Analysis for Database Code

Further, we set out a study to understand database code quality by mining database schema
smells and explore their relationship with other software artifacts. The chosen subject sys-
tems are a wide variety of industrial as well as open-source software systems. We keep
the focus of the study on performance and maintainability quality attributes of relational
database code. Characteristics of smells, such as frequency (or the occurrence pattern) of
smells [HPvD12, LVKM+14, BQO+12], provide dimensions of prioritization and refactoring.
Similarly, relationships of smells with domains, frameworks, and other application charac-
teristics [LVKM+14, FFM+13], help us understand the interplay of smells with application
characteristics. In the context of database programming, orm (Object-Relational Mapping)
frameworks simplify database access by providing an abstraction. However, it is not under-
stoodwhether the usage of an orm framework in an applicationwill lead us to fewer number
of smells. Further, studying co-occurrence of database schema smells will complement the
existing studies exploring properties of co-occurrence among smells [MVL03, SFS16].

With this background, we explore the following research questions.

DB-RQ1. What are the occurrence patterns of database smells?
We examine the distribution of database smells to find out whether there exists a set
of database smells that occurs more frequently in general than another set of database
smells.

DB-RQ2. Does the size of the project or the database play a role in smell density?
We investigate the relationship of the size of the project (both the total lines of code
as well as total number of create table statements) and smell density.

DB-RQ3. Does the nature of code (type of the application, or usage of orm frame-
works) affect the smell density?
The usage of an orm framework makes it easier to work with a database. We ex-
plore whether the usage of orm frameworks and the type of the application influence
database smell density.

DB-RQ4. What is the degree of co-occurrence among database smells?
Patterns and smells tend to occur together [BMR+96a, SSS14]. We examine the degree

48 / 168 3.2. THEORETICAL BACKGROUND

of co-occurrence among database smells to find out a set of database smells that is
likely to occur when a database smell gets detected.

Research questions
Analyze code

Detected database
schema smells

Analyze smells to
provide
answers to the
research questionsDbDeo – SQL statement

extractor and database
smell detector

Catalog of database schema
smells

2568 open-source and
357 industrial
repositories

Developers’
survey

Figure 3.4: Overview of the maintainability analysis study on database schema code

Figure 3.4 provides an overview of the experiment. To study the addressed questions,
we compiled a catalog of 13 database schema smells. We attempt to understand developers’
perspective on database schema smells through an online survey. We developed a tool viz.
DbDeo to extract embedded sql statements from host source code (in which the sql state-
ments are embedded) and identify cataloged database smells. We analyzed 2,568 GitHub
open-source repositories and 357 industrial close-source repositories containing sql state-
ments and provide empirical answers to each of the posed research questions.

3.2 Theoretical Background

In this section, we present the necessary theoretical background on which the experiments
in this thesis are based on. We define and specify each category of smells — code smells (at
three granularities — implementation, design, and architecture), configuration smells, and
database schema smells and elaborate on the challenges of applying a deep learning-based
smell detection mechanism.

3.2.1 Code Smells

The term code smells is an umbrella term; depending upon the granularity, scope, and impact,
code smells can be classified as implementation, design, and architecture smells [SSS16].

49 / 168 3.2. THEORETICAL BACKGROUND

3.2.1.1 Architecture Smells

Smells arising at architecture granularity (typically perceived at component level) and af-
fecting software quality at system-level are referred as architecture smells. In this thesis,
we examine, detect, and analyze seven common architecture smells. We provide their defi-
nitions below.

1. Cyclic Dependency: This smell arises when two or more architecture components
depend on each other directly or indirectly [MCKX15, LR06].

2. Unstable Dependency: This smell arises when a component depends on other less
stable components [FDW+16]. Stable Dependencies Principle (sdp) [Mar02] states
that the dependencies between packages should be in the direction of the stability of
the packages. Hence, a package should only depend on packages that are more stable
than it is.

3. Ambiguous Interface: This smell arises when a component offers only a single,
general entry-point into the component [GPEM09]. This smell typically appears in
event-based publish-subscribe systems where interactions are not explicitly modelled
and multiple components exchange event messages via a shared event bus.

4. God Component: This smell occurs when a component is excessively large either in
terms of loc (Lines Of Code) or number of classes [LR06].

5. Feature Concentration: This smell occurs when a component realizes more than
one architectural concerns or features [dAAC14b]. In other words, the component is
not cohesive.

6. Scattered Functionality: This smell arises when multiple components are responsi-
ble for realizing the same high-level concern [GPEM09]. It is an indication that pos-
sibly classes or methods must be moved from one component to another in order to
reduce coupling among components and enhance cohesion within each component.

7. Dense Structure: This smell arises when components have excessive and dense de-
pendencies without any particular structure [SFS16].

3.2.1.2 Design Smells

Design smells are structures in the design that indicate violation of fundamental design
principles and negatively impact design quality [SSS14]. Table 3.1 lists all the design smells
[SSS14] considered in this work along with their brief descriptions.

3.2.1.3 Implementation Smells

The scope and granularity of implementation smells is limited to typically a method. Table
3.2 lists all the implementation smells taken into consideration in this study.

50 / 168 3.2. THEORETICAL BACKGROUND

Table 3.1: Description of Detected Design Smells

Design smell Brief description
Broken Hierarchy a supertype and its subtype conceptually do not share an

“IS-A” relationship
Broken Modulariza-
tion

data and/or methods that ideally should have been localized
into a single abstraction are separated and spread across
multiple abstractions

Cyclically-dependent
Modularization

two or more abstractions depend on each other directly or
indirectly

Cyclic Hierarchy a supertype in a hierarchy depends on any of its subtypes
Deep Hierarchy an inheritance hierarchy is “excessively” deep
Deficient Encapsula-
tion

the declared accessibility of one or more members of an ab-
straction is more permissive than actually required

Duplicate Abstraction two or more abstractions have identical names or identical
implementation

Hub-like Modulariza-
tion

an abstraction has high incoming and outgoing dependen-
cies

Imperative Abstrac-
tion

an operation is turned into a class

Insufficient Modular-
ization

an abstraction exists that has not been completely decom-
posed, and a further decomposition could reduce its size, or
implementation complexity

Missing Hierarchy a code segment uses conditional logic to explicitly manage
variation in behaviour

Multifaceted Abstrac-
tion

an abstraction has more than one responsibility assigned to
it

Multipath Hierarchy a subtype inherits both directly as well as indirectly from a
supertype

Rebellious Hierarchy a subtype rejects the methods provided by its supertype(s)
Unexploited Encapsu-
lation

client code uses explicit type checks

Unfactored Hierarchy there is unnecessary duplication among types in a hierarchy
Unnecessary Abstrac-
tion

an abstraction that is actually not needed

Unutilized Abstraction an abstraction is left unused
Wide Hierarchy an inheritance hierarchy is “too” wide

3.2.2 Exploring Deep Learning-based Solution for Smell Detection

In this section, we present challenges in applying deep learning techniques on source code
as well as selection of code smells for our exploration.

51 / 168 3.2. THEORETICAL BACKGROUND

Table 3.2: Description of Detected Implementation Smells and Their Distribution

Implementation smell Brief description
Complex Conditional a complex conditional statement
Complex Method a method with high cyclomatic complexity
Duplicate Code a code clone within a method
Empty Catch Block a catch block of an exception is empty
Long Identifier an identifier with excessive length
Long Method a method is excessively long
Long Parameter List a method has long parameter list
Long Statement an excessive long statement
Magic Number an unexplained number is used in an expression
Missing Default a switch statement does not contain a default case
Virtual Method Call from Construc-
tor

a constructor calls a virtual method

3.2.2.1 Challenges in Applying Deep Learning on Source Code

Applying deep learning techniques on source code is non-trivial. In this section, we present
challenges that we face in the process of applying deep learning techniques on source code.

Analogies with other problems:
Deep learning is advancing rapidly in domains that address problems of image, video, audio,
text, and speech processing [LBH15]. Consequently, these advances drive current trends in
deep learning and inspire applications across disciplines. As such, studies that apply deep
learning on source code rely heavily on results from these domains, and particularly that of
text mining.

Based on prior observations that demonstrate similarity between source code and natu-
ral language [HBS+12], the research community has largely addressed relevant problems on
mining source code by adopting latest state-of-the-art natural language processing methods
[APS16, PPDL+16, IKCZ16, VCD17, YN17]. However, besides similarities, there also exist
major differences that need to be taken into considerationwhen designing such studies. First
of all, source code, unlike natural language, is semantically brittle; minor syntactic changes
can drastically change the meaning of code [ABDS18]. As an effect, treating code as text by
ignoring the underlying formal semantics carries the risk of not preserving the appropriate
meaning. Besides formal semantics, the syntax of source code obviously presents substan-
tial differences compared to the syntax found in text. As a result, methods that perform
well on text are likely to under-perform on source code. Architectures involving cnn-1d
layers, for instance, have been proven effective for matching subsequences of short lengths
[Cho17], which are often found in natural language where the length of sentences is limited.
This however does not necessarily apply on self-contained fragments of source code, such
as method definitions, which tend to be longer. Finally, even though good practices dictate
naming conventions in coding, unlike natural language, there is no universal vocabulary of
source code. This results to a diversity in the artificial vocabulary found in source code that

52 / 168 3.2. THEORETICAL BACKGROUND

may affect the quality of the models learned.

Approaches that treat code as text mainly focus on the mining of sequential patterns of
source code tokens. Other emerging approaches look into structural characteristics of the
code with the objective of extracting visual patterns delineated on code [OAH+18]. Even
though there are features in source code, such as nesting, which demonstrate distinctive
visual patterns, treating source code in terms of such patterns and ignoring the rich inter-
twined semantics carries the risk of oversimplifying the problem.

Lack of resources:
Research employing deep learning techniques on software engineering data, including source
code as well as other relevant artifacts, is still young. Consequently, results against tradi-
tional baseline techniques are very limited [FM17, HD17]. Especially when it comes to
processing solely source code artifacts, relevant studies are scarce and mostly address the
problem of drawing out semantics related to the functionality of a piece of code [APS16,
WVLVP15, WTVP16, MLZ+16, PHN+15]. To the best of our knowledge, our study is the
first to thoroughly investigate the application of deep learning techniques with the objec-
tive of examining characteristics of source code quality. Therefore, a major challenge in
studies of this kind is that there is no prior knowledge that would guide this investigation,
a challenge reflected on all stages of the inquiry. At the level of designing an experiment,
there exist no rules of thumb indicating a set up for a deep learning architecture that ad-
equately models the fine-grained features required for the problem in hand. Furthermore,
at the level of training a model, there is no prior baseline for hyper-parameters that would
lead to an optimal solution. Finally, at the level of evaluating a trained model, there exist
no benchmarks to compare against; there is no prior concrete indication on the expected
outcomes in terms of reported metrics. Hence, a result that would appear sub-optimal in
another domain such as natural language processing, may actually account for a significant
advance in software quality assessment.

Besides challenges that relate to the know-how of applying deep learning techniques
on source code, there are technical difficulties that arise due to the paucity of curated data
in the field. The need for openly available data that can serve for replicating data-driven
studies in software engineering has been long stressed [Rob10]. The release of curated data
in the field is encouraged through badging artifact-evaluated papers as well as dedicated
data showcase venues for publication. However, the software engineering domain is still far
from providing benchmark datasets, whereas the available datasets are limited to curated
collections of repositories with associated metadata that lack ground truth annotation that
is essential for a multitude of supervised machine learning tasks. Therefore, unlike domains
such as image processing and natural language processingwhere an abundance of annotated
data exist [KH09, DDS+09, LCB10, MDP+11], in the field of software engineering the lack of
gold standards induces the inherent difficulty of collecting and curating data from scratch.

53 / 168 3.2. THEORETICAL BACKGROUND

3.2.2.2 Selection of Smells

Over the last two decades, the software engineering community has documented many
smells associated with different granularities, scope, and domains [SS18]. A comprehensive
taxonomy of the software smells can be found online.1 For this study, selection of smells is a
crucial decision. The scope of the higher granularity smells, such as design and architecture
smells, is large, often spanning to multiple classes and components. It is essential to provide
all the intertwined source code fragments to the deep learning model to make sure that the
model captures the key deciding elements from the provided input source code. Hence, it is
naturally difficult to detect them using deep learning approaches, unless extensive feature
engineering is performed beforehand in order to attain an appropriate representation of the
data. We started with implementation smells because they can be detected typically just
by looking at a method. However, we would like to avoid very simple smells (such as long
method) which can be easily detected by less sophisticated techniques.

We chose complex method (cm—i.e., the method has high cyclomatic complexity), magic
number (mn—i.e., an unexplained numeric literal is used in an expression), and empty catch
block (ecb—i.e., a catch block of an exception is empty). These three smells represent three
different kinds of smells where neural networks have to spot specific features. For instance,
to detectmagic number , the neural networks must spot a specific range of tokens represent-
ing magic numbers. On the other hand, detection of complex method requires looking at the
entire method and the structural property within it (i.e., nesting depth of the method). For
the detection of empty catch block the neural network has to recognize a sequence of a try
block followed by an empty catch block.

To expand the horizon of the experiment, we also selectmultifaceted abstraction (ma—i.e.,
a class has more than one responsibility assigned to it) design smell. The scope of this smell
is larger (i.e., the whole class) and detection is not trivial since the neural network has to cap-
ture cohesion aspect (typically captured by the Lack of Cohesion of Methods (lcom) metric
in deterministic tools) among the methods to detect it accurately. This smell not only allows
us to compare the capabilities of neural networks in detecting implementation smells with
design smells but also sets the stage for the future work to build on.

3.2.3 Configuration Smells

We define configuration smells as follows:

Configuration smells are the characteristics of a configuration program or script
that violate the recommended best practices and potentially affect the program’s
quality in a negative way.

Similar to traditional software engineering practices where smells are classified based
on granularity and scope, configuration smells are also classified as implementation con-
figuration smells, design configuration smells, documentation configuration smells, and so

1http://www.tusharma.in/smells

http://www.tusharma.in/smells

54 / 168 3.2. THEORETICAL BACKGROUND

on. In this work, our focus is on two major categories of configuration smells namely im-
plementation configuration smells and design configuration smells.

3.2.3.1 Implementation Configuration Smells

Implementation configuration smells are quality issues such as naming convention, style,
formatting, and indentation in configuration code. We prepare a list of recommended best
practice by studying available resources, such as the Puppet style guide [Sty16] and rules
implemented by Puppet-Lint. We group the best practices based on their similarity and
arrive at a corresponding implementation configuration smell when a best practice is vio-
lated. Table 3.3 lists the implementation configuration smells and corresponding set of best
practices.

Here, we present a list of implementation configuration smells with a brief description.
Figure 3.5 shows an annotated Puppet example with all the cataloged implementation con-
figuration smells.

Figure 3.5: An annotated Puppet example with all the cataloged implementation configura-
tion smells

1. Missing Default Case (imd) A default case is missing in a case or selector statement.

2. InconsistentNamingConvention (inc)The used naming convention deviates from
the recommended naming convention.

55 / 168 3.2. THEORETICAL BACKGROUND

Table 3.3: Mapping Between Implementation Configuration Smells and Corresponding Best
Practices

Smells Best practices
Missing default case Case and Selector statements should have a default case
Inconsistent naming
convention

The names of variables, classes and defines should not con-
tain a dash

Complex expression Expressions should not be too complex
Duplicate entity Duplicated hash keys and parameters should be removed
Misplaced attribute • “ensure” attribute should be the first attribute speci-

fied

• The required parameters for a class or ‘define’ should
be listed before optional parameters

• Right-to-left chaining arrows should not be used
Improper alignment • Properly align arrows (arrows are not all placed one

space ahead of the longest attribute)

• Tabulation characters should not be used
Invalid property value • “ensure” property of file resource should be valid

• File mode should be represented by a valid 4-digit oc-
tal value (rather than 3) or symbolically

• The path of “puppet:///” url should start with “mod-
ules/”

Incomplete tasks “fixme” and “todo” tags should be handled
Deprecated statement
usage

Deprecated node inheritance and “import” statement
should not be used

Improper quote usage • Booleans should not be quoted

• Variables should not be used in single quoted strings

• Unquoted node names should not be used

• Resource titles should be quoted

• Literal boolean values should not be used in compar-
ison expressions

Long statement Lines should not be too long
Incomplete condi-
tional

“if … elsif” constructs shall be terminated with an “else”
clause

Unguarded variable Variables should be enclosed in braces when being interpo-
lated in a string

3. Complex Expression (ice) A program contains a difficult to understand complex
expression.

4. Duplicate Entity (ide) Duplicate hash keys or duplicate parameters present in the

56 / 168 3.2. THEORETICAL BACKGROUND

configuration code.

5. Misplaced Attribute (ima) Attribute placement within a resource or a class has not
followed a recommended order (for example, mandatory attributes should be specified
before the optional attributes).

6. Improper Alignment (iia) The code is not properly aligned (such as all the arrows
in a resource declaration) or tabulation characters are used.

7. Invalid Property Value (ipv) An invalid value of a property or attribute is used (such
as a file mode specified using 3-digit octal value rather than 4-digit).

8. Incomplete Tasks (iit)The code has “fixme” and “todo” tags indicating incomplete
tasks.

9. Deprecated Statement Usage (ids) The configuration code uses one of the depre-
cated statements (such as “import”).

10. Improper Quote Usage (iq) Single and double quotes are not used properly. For
example, boolean values should not be quoted and variable names should not be used
in single quoted strings.

11. Long Statement (ils) The code contains long statements (that typically do not fit in
a screen).

12. Incomplete Conditional (iic) An “if..elsif” construct used without a terminating
“else” clause.

13. Unguarded Variable (iuv) A variable is not enclosed in braces when being interpo-
lated in a string.

3.2.3.2 Design Configuration Smells

Design configuration smells reveal quality issues in the module design or structure of a con-
figuration project. Various available sources, such as the Puppet style guide [Sty16], blog
entries [Lar16a, Lar16b], and videos of technical talks [Lar16c] highlight the best practices to
be followed for configuration code. We obtain a list of commonly occurring design config-
uration smells from the violation of these best practices at design-level. We assign relevant
names (often inspired by the traditional names of smells) to the smells and document their
forms representing variations of the smells. Here, we present design configuration smells
with a brief description.

1. Multifaceted Abstraction (dmf) Each abstraction (e.g. a resource, class, ‘define’, or
module) should be designed to specify the properties of a single piece of software. In
other words, each abstraction should follow single responsibility principle [Mar02].
An abstraction suffers frommultifaceted abstraction when the elements of the abstrac-
tion are not cohesive.

57 / 168 3.2. THEORETICAL BACKGROUND

The smell may occur in the following two forms:

• a resource (file, package, or service) declaration specifies attributes of more than
one physical resources, or

• all the language elements declared in a class, ‘define’, or a module are not cohe-
sive.

2. Unnecessary Abstraction (dua) A class, ‘define’, or module must contain decla-
rations or statements specifying the properties of a desired system. An empty class,
‘define’, or module shows the presence of unnecessary abstraction smell and thus must
be removed.

3. Imperative Abstraction (dia) Puppet is declarative in nature. The presence of im-
perative statements (such as “exec”) defies the purpose of the language. An abstrac-
tion containing numerous imperative statements suffers from imperative abstraction
smell.

4. Missing Abstraction (dma) Resource declarations and statements are easy to use
and reuse when they are encapsulated in an abstraction such as a class or ‘define’.
A module suffers from the missing abstraction smell when resources and language
elements are declared and used without encapsulating them in an abstraction.

5. Insufficient Modularization (dim) An abstraction suffers from this smell when it is
large or complex and thus can be modularized further. This smell arises in following
forms:

• if a file contains a declaration of more than one class or ‘define’, or

• if the size of a class declaration is large crossing a certain threshold, or

• the complexity of a class or ‘define’ is high.

6. Duplicate Block (ddb) A duplicate block containing a set of statements more than a
threshold indicates that probably a suitable abstraction definition is missing. Thus a
module containing such a duplicate block suffers from duplicate block smell.

7. BrokenHierarchy (dbh)The use of inheritance must be limited to the same module.
The smell occurs when, the inheritance is used across namespaces where inheritance
is not natural (“is-a” relationship is not followed).

8. UnstructuredModule (dum) Each module in a configuration repository must have a
well-defined and consistent module structure. A recommended structure for amodule
is the following.

• Module name

– manifests
– files

58 / 168 3.2. THEORETICAL BACKGROUND

– templates
– lib
– facts.d
– examples
– spec

An ad-hoc structure of a repository suffers from unstructured module smell that im-
pacts understandability and predictability of the repository.

9. Dense Structure (dds) This smell arises when a configuration code repository has
excessive and dense dependencies without any particular structure.

10. Deficient Encapsulation (dde) This smell arises when a node definition or ENC
(External Node Classifier) declares a set of global variables to be picked up by the
included classes in the definition.

11. Weakened Modularity (dwm) Each module must strive for high cohesion and low
coupling. This smell arises when a module exhibits high coupling and low cohesion.

3.2.4 Database Smells

We define database smells as follows:

Database smells are the characteristics of database code (either ddl or dml sql
statements), database system, or stored data that indicate violation of the recom-
mended best practices and potentially affect the quality of the software system in
a negative way.

We categorize database smells in three categories to understand them better.

• Schema smells: Smells that arise due to poor schema design are classified as database
schema smells. Smells presented in this section such as compound attribute, index
abuse, and god table are examples of database schema smells.

• Query smells: Smells arising frompoorlywritten sql queries are specified as database
query smells. Misused null [Kar10] (when null is used as an ordinary value in sql
queries) and non-grouped column reference [Kar10] (when a query references at least
one non-grouped column in the presence of group by clause) are examples of database
query smells.

• Data smells: Data smells arise from poor data handling in databases. Intermingled
data types (where numbers and alphabets are intermingled leading to confusion and
subtle bugs; for instance, using ‘O’ instead of ‘0’ in 7O34) is an example of data smells.

59 / 168 3.2. THEORETICAL BACKGROUND

In this thesis, we focus only on database schema smells. We carry out a comprehensive
exploration of resources that discuss best practices as well as common database smells or
anti-patterns. We study wide variety of resources including books [Kar10], research liter-
ature [Che15, NC15, EV15], industrial white-paper [Red17], and discussions on question-
answer sites [dbS10]. We summarize the result of our exploration in the form of a catalog
of database schema smells.

1. CA: Compound attribute: This smell arises when a column is used to store a non-
atomic attribute. For instance, storing comma-separated lists for an attribute to avoid
creating an intersection table for a many-to-many relationship [Kar10, Red17] or stor-
ing a json file which is not used atomically [dbS10].

Each attribute valuemust be stored and retrieved atomically. If a table does not adhere
to this practice, the resultant schema introduces multiple problems. For instance,
a user has to write more complex queries (using pattern-matching expressions) to
retrieve data from this table. Such complex queries are prone to inaccurate results.
Also, such queries cannot exploit available indexes. Even further, these queries are
not portable due to vendor specific support to pattern-matching expressions.

2. AL: Adjacency list: The smell occurs when an attribute in a table refers another
row in the same table i.e., a table has a recursive relationship to model hierarchical
structure [Kar10, Red17].

Querying a tree with adjacency list is quite difficult and error-prone. Specifically,
deleting a node from a tree which is modelled using adjacency list is non-trivial and
prone to introduce errors in the database.

3. SK: Superfluous key: This smell arises when an unnecessary superfluous pseudo
key is defined in a table where other attribute(s) in the table may serve as a primary
key [Kar10].

Choosing an appropriate primary key is an essential requirement for a table. A pseudo
key could be defined when the present set of attributes could not serve as a primary
key. However, a pseudo key is unnecessary and even erroneous (leads to duplicate
rows) when the existing set of attributes of the table could be used as a primary key.

4. MC: Missing constraints: This smell arises when constraints for a foreign key are
missing from a schema definition [Kar10, Red17].

Referential integrity is an essential property of relational databases. Values referenced
in a foreign key column must exist in the columns of primary or unique keys of the
parent table. It can be easily achieved by defining constraints on foreign keys. How-
ever, when such constraints are missing for a foreign key it leads to compromized
referential integrity of the database.

5. MD: Metadata as data: This smell occurs when metadata is stored as data in the
form of eav (Entity-Attribute-Value) pattern [Kar10, Red17].

60 / 168 3.2. THEORETICAL BACKGROUND

In a relational table, all the attributes are equally applicable for all the rows in the
table. It is tempting to implement eav pattern when a subset of attributes applicable
for a subset of rows and the rest of attributes for rest of the rows. However, this
arrangement introduces many deficiencies in the database; for example, one can’t use
native sql data types (leading to invalid data), enforce referential integrity, or make
up attribute names.

6. PA: Polymorphic association: This smell occurs when a table uses a multi-purpose
foreign key [Kar10, Red17].

Relational database schema does not allow us to declare polymorphic association.
However, many times developers define an additional column in a table as a tag to
realize a polymorphic association. This arrangement makes it difficult to query the
table and compromises readability and understandability.

7. MA: Multicolumn attribute: This smell arises when multiple serial columns are
created for an attribute [Kar10, dbS10].

In cases when an attribute may have one or more values, it is tempting to create
multiple columns for the attribute in a table. However, such a schema design makes
querying the table very difficult and verbose.

8. CT: Clone tables: This smell occurs when a table is split horizontally in multiple
tables using some criterion (for example, year) to achieve scalability [Kar10].

This smell not only makes the querying difficult but also introduces problems man-
aging data integrity.

9. VA: Values in attribute definition: This smell arises when specific values are de-
fined in an attribute definition to restrict possible values of the attribute [Kar10].

Specifying all possible values for an attribute in schema definition mixes metadata
with data which is not recommended. This smell makes it difficult to extend or modify
the list of accepted values for an attribute.

10. IA: Index abuse: This smell arises when the indexes are used poorly [Kar10, Red17].
This smell has the following variants: 1) Missing indexes 2) Insufficient indexes (in-
dexes must be prepared at least for primary and foreign keys), and 3) Unused indexes

Creating effective indexes is not trivial; it requires judicious planning. A database
with a deficient plan for indexes performs poorly.

11. GT: God table: This smell arises when a table contains excessive number of attributes
[dbS10, Red17].

Excessive number of attributes tend to violate the principles of normalization which
in turn introduce a variety of problems. Additionally, it impacts maintainability of
the database.

61 / 168 3.2. THEORETICAL BACKGROUND

12. MN: Meaningless name: This smell occurs when a table or an attribute name is
cryptic or meaningless [dbS10].

Meaningless or cryptic names hamper readability of the database’s schema.

13. OA: Overloaded attribute names: This smell occurs when two or more attributes
are defined with identical names but as distinct data types in different tables [Red17].

Identical names with different data types create confusion and could lead to subtle
bugs in queries.

Chapter 4

Implementation

Even the best designs are useless without an effective imple-
mentation.

In this chapter, we elaborate on the implementation details for each experiment that
we carried out. We illustrate the tools, such as smell detection tools, employed for the
experiments, detection method for each supported smell, and the realization of qualitative
mechanisms.

4.1 Analyzing Production Code for Quantitative Main-
tainability Assessment

In this section, we illustrate the process we adopted to select, download, and mine C# repos-
itories. We also discuss the implementation details of Designite — a software design quality
assessment tool that we developed to analyze C# code.

4.1.1 Mining C# Repositories

We used the following protocol to identify our subject systems.

• We use RepoReapers [MKCN17] to select a set of repositories as subject systems from
GitHub. RepoReapers analyzes GitHub repositories and provides their quality char-
acteristics based on eight dimensions. These dimensions are architecture (as evidence
of code organization), continuous integration and unit testing (as evidence of qual-
ity), community and documentation (as evidence of collaboration), history, issues (as
evidence of sustained evolution), and license (as evidence of accountability). RepoRe-
apers assigns a score corresponding to each dimension.

62

63 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

• We select all the repositories containing C# code where at least six out of eight Re-
poReapers’ dimensions had suitable scores. We consider a score to be suitable if it has
score greater than zero.

• Next, the repositories selected through the above-mentioned criteria are sorted based
on the number of assigned stars. We select repositories tagged with more than 10
stars.

• Following these criteria, we download more than 3,400 repositories using our code
smell detection and analyze them using our quality analysis tool — Designite. Some
of the repositories could not be analyzed due to either missing external dependencies
or custom build mechanisms (i.e., missing standard C# project files). We successfully
analyze 3,209 repositories for the study.

• Test code contains different types of smells (viz. test smells [Deu01]) which is not
in the scope of this experiment. Hence, we exclude the test code belonging to the
selected software repositories from our empirical analysis.

A complete list of the selected C# repositories along with their analyzed results can be
found online [Sha19c]. Table 4.1 presents some key characteristics of the selected subject
systems.

Table 4.1: Characteristics of the Analyzed Repositories

Attributes Total values
Repositories 3 209
Components 75 205
Types 724 854
Methods 3 739 387
Lines of code (C# only) 83 135 679

4.1.2 Analyzing C# Repositories Using Designite

Designite [Sha16, SMT16] is a software design quality assessment tool. We use Designite’s
version 2.3.0 to analyze repositories. Apart from supporting detection of a wide variety of
design and implementation smells, it detects seven well-known architecture smells for C#
code. Other key features supported by the tool are object-oriented code metrics computa-
tion, dependency structure matrix, trend analysis of smells, code-clone detection, integra-
tion with external tools via its console application, and hotspot analysis. Apart from its
gui-based desktop application, Designite also offers a console application which is partic-
ularly useful for analyzing a large number of repositories automatically. Customization is
one of the major features of the tool — a user can customize the way input source code
is provided to the tool, certain smells to skip in an analysis session, or change thresholds
that are used to detect certain smells. The tool provides interactive visualizations (such as

64 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

sunburst) for the detected smells and metrics; these visualization aids make it easier for the
users to comprehend the results. Figure 4.1 provides an overview of major features of the
tool. The tool offers free academic licenses for all academic purposes.

Figure 4.1: Presentation of identified smells in Designite

4.1.2.1 Architecture

Figure 4.2 shows the major components of the tool. Designite uses Roslyn1 to parse C#
code and prepares Abstract Syntax Tree (ast). The source model layer accesses the ast and
prepares a simple hierarchical source code model. The model contains information about all
the analyzed source code elements (such as namespaces, classes, methods, and fields). It is a
hierarchical model; therefore, for example, an object of a project holds references to all the
namespace objects in the project. The model is used by the tool’s back-end to infer smells
and compute metrics. The back-end hosts the domain logic i.e., rules to detect smells. Apart
from a desktop application, the tool offers Microsoft Visual Studio extension2 as well as a
console application.

4.1.2.2 Detection Mechanism for Supported Architecture Smells

In this section, we elaborate on the detection mechanism used to detect the supported ar-
chitecture smells.

1https://github.com/dotnet/roslyn
2https://marketplace.visualstudio.com/items?itemName=designite.

Designite

https://github.com/dotnet/roslyn
https://marketplace.visualstudio.com/items?itemName=designite.Designite
https://marketplace.visualstudio.com/items?itemName=designite.Designite

65 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

Figure 4.2: Architecture of the tool

Cyclic Dependency: To detect this smell, we first compute a dependency list for each
component. Therefore, such a list for component A represents the components on
which component A depends. Component A depends on component B if at least one
of the classes in A refer (by association, aggregation, or composition) to at least one of
the classes in component B. We construct a directed graph using the above informa-
tion where ‘nodes’ refer to components and ‘edges’ refer to their dependencies. We
then apply depth-first algorithm to detect cycles in the graph for each component.
For large graphs, we stop the exploration after a threshold (currently set to 5 hops) to
avoid extraneous computation.

Unstable Dependency: Instability of a component is computed as follows:

I =
Ce

Ce +Ca
(4.1)

Here, I represents the degree of instability of the component, Ca represents the affer-
ent coupling (or incoming dependencies), and Ce represents the efferent coupling (or
outgoing dependencies). We compare the computed metric value of each component
against its dependent components, and detect the smell when a dependent component
is more stable.

Ambiguous Interface: We detect this smell when we find a component containing only
one public or internal method. An internal method in C# has the visibility inside the
assembly; hence, other components (namespaces) within the assembly may access it.
In order to avoid small components from getting reported as ambiguous interfaces,
we detect the smell only when the component has at least 5 classes.

God Component: We detect the smell when a component has more than 30 classes or
27,000 loc following the recommendations by Lippert et al. [LR06].

Feature Concentration: Similar to lcom (Lack of Cohesion of Methods) [CK94] metric
which is applicable to classes, we compute lcc (Lack of Component Cohesion) to
measure the cohesion of a component. To compute lcc, we identify related classes in
a component, prepare a dependency graph, and identify the number of disconnected

66 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

sub-graphs. Two classes are related if they share any of the association, aggregation,
composition, or inheritance relationships.

LCC =
Number of disconnected sub-graphs

Total number of classes
(4.2)

This smell is detected if lcc is more than a pre-defined threshold. We use 0.2 as the
lcc threshold to detect this smell.

Scattered Functionality: We determine the accesses to at least two external components
that occur together from a method. If such accesses happen frequently (minimum 2
times) in a component, this indicates the presence of scattered functionality architec-
ture smell.

Dense Structure: This smell occurs when components form a very dense dependency
graph. In order to detect this smell, a dependency graph involving all the components
is formed and the average degree of the graph is computed.

Average degree=
2×|E|
|V |

(4.3)

Where E is the set of all the edges and V is the set of all vertices belonging to the
graph. We detect the smell when the average degree is greater than a pre-defined
threshold. We have set the threshold to 5. Since the dependency graph is formed
by considering all the components present in the analyzed solution, maximum one
instance of this smell can occur for the solution.

4.1.2.3 Detection Mechanism for Supported Design Smells

In this section, we present the detection method used to detect the supported design smells.
Here, type/abstraction refers to a class or interface.

Duplicate Abstraction: We detect this smell when we find code clones (type-1) of size
> 20 lines.

Imperative Abstraction: If a class has only one public method and the size of the class (in
terms of loc) is greater than a pre-defined threshold (i.e., 100), we detect this smell.

Multifaceted Abstraction: We compute lcom (Lack of Cohesion amongMethods) metric
for each type. If the value of the metric is greater than a threshold (i.e., 0.8) and the
type is not very small — number of fields and methods are greater than or equal to a
threshold (i.e., 7), we detect the smell.

Unnecessary Abstraction: If a type has no methods and the number of fields and prop-
erties are less than a threshold (i.e., 5), we detect this smell.

67 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

Unutilized Abstraction: A type is unutilized if fan-in of the type is zero i.e., there is no
users of this type and if the type has no super class. In case the type has super class
the the type suffers from unutilized abstraction if fan-in of both the type and its super
class is zero.

Deficient Encapsulation: If a type has at least one public field or global field (declared
as public static), we detect this smell.

UnexploitedEncapsulation: We retrieve the list of types that are being explicitly checked
in amethod. We find the number of checked types that belong to the same inheritance
hierarchy. If the number is greater than a threshold (i.e., 2), we detect this smell.

Broken Modularization: If a type does not have any methods and count of fields and
properties is greater than a certain threshold (i.e., 5), we detect this smell.

Cyclically-dependent Modularization: We prepare a dependency graph of types from
fan-in and fan-out information. We use this dependency graph to detect direct or
indirect cycles.

Hub-like Modularization: If fan-out and fan-in of a type is greater than a threshold (i.e.,
20), the type suffers from this smell.

Insufficient Modularization: There are three forms of this smell.

• If the count of public methods in a type crosses a threshold (i.e., 20), the type is
suffering from insufficient modularization.

• If the total methods in a type exceed a threshold (i.e., 30), we detect this smell.

• We compute wmc (WeightedMethods per Class) metric for each type. We detect
this smell if the value of the metric is more than a threshold (i.e., 100).

Broken Hierarchy: For each class which has at least one super class with at least one
public method, we check whether the class satisfy the condition of broken hierarchy
smell. If the class does not have any method overridden or “leniently” overridden
from its super classes, we detect the smell. A method is leniently overridden when
the method name matches (but not necessarily the parameter types) with any of the
public methods in the super classes.

Cyclic Hierarchy: If a type accesses any of the sub-types then we detect this smell.

Deep Hierarchy: We measure the dit (Depth of Inheritance Tree) metric for each type.
If the value of the metric crosses a threshold (i.e., 6), we detect this smell.

Missing Hierarchy: We get a list of types checked explicitly in a method, for example,
by using instanceof operator. Then, if more than one of the types in this list are not
belonging to an inheritance hierarchy then we conclude that an inheritance hierarchy
is missing.

68 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

Multipath Hierarchy: We derive a list of the direct super classes of a class. We also
retrieve all the ancestors of all the parents. If there is any type in common between
these two lists, we conclude the presence of this smell.

Rebellious Hierarchy: We check all the non-private methods in a class. If any method
is overridden and either the method is empty or has only throw statement, then we
detect this smell.

Unfactored Hierarchy: We detect this smell when we detect code clones in sibling types
(where the classes share super type).

Wide Hierarchy: We compute the nc (Number of Children) metric for each type. If the
value of the metric crosses a threshold (i.e., 10), we detect this smell.

4.1.2.4 Detection Mechanism for Supported Implementation Smells

ComplexConditional: Wedetect this smell when a conditional expression (in statements
such as if, for, and while) have more than three sub-expressions separated by logical
operators.

Complex Method: We compute cyclomatic complexity [CK94] for all the methods. If
cyclomatic complexity of a method crosses the threshold (i.e., 8), the tool detects this
smell.

Duplicate Code: When we find duplicate code blocks within a method, we detect this
smell.

Empty Catch Block: We detect the smell when the try-catch statement has an empty
catch block.

Long Identifier: We detect this smell when the length of an identifier (i.e., local variable,
parameter name, or a field) is greater than a threshold (i.e., 30).

LongMethod: When a method is longer than 100 loc, we tag the method with this smell.

Long Parameter List: Amethod having more than five parameters, suffers from the long
parameter list smell.

Long Statement: If the tool finds a statement larger (in terms of number of characters
including white-spaces) than a threshold (i.e., 120), it detects this smell.

Magic Number: The presence of a numeric literal (except 0 and 1) anywhere except as-
signment statements indicates this smell.

Missing Default: We detect this smell when default case is missing in a switch case.

Virtual Method Call from Constructor: This smell gets detected by our implementa-
tion, when a constructor calls at least one virtual method.

69 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

4.1.2.5 Evaluation

We conducted a manual validation to establish the accuracy of the tool. We chose a project
DotNetOpenAuth.Core from a well-known open-source repository DotNetOpenAuth3 for the
purpose. The selected project contains 16,663 loc, 136 types, and 7 components. We sought
help from two volunteers to carry out manual validation — one volunteer works in a soft-
ware development company (three years of industry experience) and another volunteer is a
PhD student with one year of industry experience. Both the volunteers did not work on the
analyzed repository in advance; however, they have hands-on experience on working with
complex industrial solutions and have a fair idea of software architecture and code smells.

We enforced the following protocol for the validation.

• Each volunteer carried out the initial manual analysis individually without discussing
it with another volunteer.

• Given their industry experience, they were aware of the basic concept of smells and
commonly known smells. Each volunteer picked all the considered design and archi-
tecture smells one by one and understood the semantics of the smell. We provided
additional material to make their learning faster.

• Both the individuals went through all the source code files one by one patiently and
checked the existence of each smell.

• While identifying smells, they were allowed to use ide features such as go to definition
and list all references as well as metrics generated from other tools.

• Once both the volunteers completed the analysis, we computedCohen’s Kappa [Coh60]
to measure the mutual agreement between the volunteers’ findings. We obtained
κ = 0.33 as the value of Cohen’s Kappa.

• Both the volunteers discussed their results, sorted out differences, and prepared a
consolidated mutually agreed results. The consolidated results had 52 design and 18
architecture smells.

• At this point, they used Designite and analyzed the considered project and obtained
a list of design and architecture smells.

• They compared the results obtained from the tool with their set of smells and tagged
them as true-positive, false-positive, and false-negative. During this categorization,
they observed that a subset of smells are identified by the tool which were not re-
vealed by their manual analysis. They analyzed each of the smells in the subset and
categorized them as well similar to the rest of the smells.

Table 4.2 presents the result of the manual validation showing smell instances detected
by Designite and the consolidated set of smells identified by the volunteers. The table also

3https://github.com/DotNetOpenAuth/DotNetOpenAuth

https://github.com/DotNetOpenAuth/DotNetOpenAuth

70 / 168
4.1. ANALYZING PRODUCTION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

Table 4.2: Results of Manual Validation

Smells Designite Manual FP FN
Broken Hierarchy 2 1 1 0
Broken Modularization 2 3 0 1
Cyclically-dependent Modularization 34 34 0 0
Duplicate Abstraction 9 9 0 0
Hub-like Modularization 1 1 0 0
Imperative Abstraction 9 9 0 0
Insufficient Modularization 5 5 0 0
Multipath Hierarchy 1 1 0 0
Rebellious Hierarchy 2 2 0 0
Unnecessary Abstraction 20 19 1 0
Unutilized Abstraction 5 3 2 0
Wide Hierarchy 4 4 0 0
Cyclic Dependency 13 13 0 0
Unstable Dependency 4 4 0 0
God Component 1 1 0 0
Feature Concentration 5 5 0 0
Scattered Functionality 3 3 0 0
Dense Structure 1 1 0 0

121 118 4 1

shows number of false-positives and false-negatives that we found in this validation. The
detailed report showing individual smells alongwith the names of component or class where
they occur and corresponding classification can be found online [Sha19d].

Interestingly, volunteers did not find all the legitimate smells manually; though, when
the tool reported these instances, they found these instances true-positive. The highest
number of smells that weremissed by the volunteers are cyclically-dependent modularization
and cyclic dependency. In this context, the volunteers found only unit-cycles i.e., cycles
involving only two classes or components. However, the tool reported cycles with more
than one length. Volunteers verified all of these non-unit cycles and found them as true-
positive. It implies that many smells go unnoticed even one actively looks for them; this
observation emphasizes the importance of using tools.

The tool reported two false-positive instances of unutilized abstraction. Both of the in-
stances are reported for exception types i.e., classes that are used as custom exceptions.
The tool could not resolve the instances of the types when they are thrown from a return
statement.

The tool also fails to detect an instance of broken modularization smell. The volunteers
classified the smell because the class only has a few data members and an empty constructor.
However, due to the presence of the constructor, the tool did not identify the smell.

We compute precision and recall exhibit by the tool in the following way.

Preciaion =
T P

T P+FP
(4.4)

71 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

Recall =
T P

T P+FN
(4.5)

Here, tp, fp, and fn refer to true-positive, false-positive, and false-negative instances.
Based on the above analysis, we obtain precision = 117/(117+ 4) = 96.6% and recall =
117/(117+1) = 99.1%.

4.2 Detecting Smells using Deep Learning

In this section, we discuss the implementation details of the experiment in which we at-
tempt to detect smells and explore the possibility of applying transfer-learning using deep
learning methods. It includes data curation process starting from downloading repositories,
detecting smells, generating positive and negative samples for training and evaluation of
the models, and tokenizing samples. Also, we elaborate on the architecture of deep learning
models.

4.2.1 Data Generation and Curation

In this section, we elaborate on the process of generating training and evaluation samples
along with the tools used in the process. We download the C# and Java repositories and
detect smells in the repositories using Designite. Designite results are used as ground truth
for training as well evaluating the performance of the deep learning models. Further, we
split each individual method or class and classify them into either a positive or negative
sample based on the presence of the smell. Finally, we tokenize and preprocess each of the
sample to feed them to deep learning models.

4.2.1.1 Downloading Repositories

We use the following protocol to identify and download our subject systems.

• We download repositories containing C# and Java code fromGitHub. We use RepoRe-
apers [MKCN17] to filter out low-quality repositories. RepoReapers analyzes GitHub
repositories and provides scores for eight dimensions of their quality. These dimen-
sions are architecture, community, continuous integration, documentation, history,
license, issues, and unit tests.

• We select all the repositories where at least six out of eight and seven out of eight Re-
poReapers’ dimensions have suitable scores for C# and Java repositories respectively.
We consider a score suitable if it has a value greater than zero.

• We ensure that RepoReapers results do not include forked repositories.

• We discard repositories with fewer than five stars and less than 1,000 loc.

72 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

• Following these criteria, we get a filtered list of 1,072 C# and 2,528 Java repositories.
We select 100 repositories randomly from the filtered list of Java repositories. Finally,
we download and analyze the 1,072 C# and 100 Java repositories.

4.2.1.2 Smell Detection

We use Designite to detect smells in C# code. Designite [SMT16, Sha16] is a software design
quality assessment tool for code written in C#. It supports detection of eleven implementa-
tion, 19 design, and seven architecture smells. It also provides commonly used code metrics
and other features such as trend analysis, code clone detection, and dependency structure
matrix to help developers assess the software quality. A free academic license of Designite
can be requested.

Similar to the C# version, we have developed DesigniteJava [Sha18c], which is an open-
source tool for analyzing and detecting smells in a Java codebase. The tool supports detec-
tion of 17 design and ten implementation smells.

We use the console version of Designite (version 2.5.10) and DesigniteJava (version
1.1.0) to analyze C# and Java code respectively and detect the specified design and im-
plementation smells in each of the downloaded repositories.

4.2.1.3 Splitting Code Fragments

CodeSplit is a set of two utility programs, one for each programming language, that split
methods or classes written in C# and Java source code into individual files. Hence, given
a C# or Java project, the utilities can parse the code correctly (using Roslyn for C# and
Eclipse jdt for Java), and emit the individual method or class fragments into separate files
following hierarchical structure (i.e., namespaces/packages becomes folders). CodeSplit for
Java is an open-source project that can be found on GitHub [Sha19b]. CodeSplit for C# can
be downloaded freely online [Sha19a].

4.2.1.4 Generating Training and Evaluation Data

The learning data generator requires information from two sources—a list of detected smells
for each analyzed repository and a path to the folder where the code fragments correspond-
ing to the repository are stored. The program takes a method (or class in case of design
smells) at a time and checks whether the given smell has been detected in the method (or
class) by Designite. If the method (or class) suffers from the smell, the program puts the
code fragment into a “positive” folder corresponding to the smell otherwise into a “nega-
tive” folder.

4.2.1.5 Tokenizing Learning Data

Machine learning algorithms require the inputs to be given in a representation appropriate
for extracting the features of interest, given the problem in hand. For a multitude of ma-
chine learning tasks it is a common practice to convert data into numerical representations

73 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

before feeding them to a machine learning algorithm. In the context of this study, we need
to convert source code into vectors of numbers honoring the language keywords and other
semantics. Tokenizer [Spi19] is an open-source tool that provides, among others, function-
ality for tokenizing source code elements into integers where different ranges of integers
map to different types of elements in source code. Figure 4.3 shows a small C# method
and corresponding tokens generated by Tokenizer. Currently, it supports six programming
languages, including C# and Java.

public void InternalCallback(object state)
{

Callback(State);
try
{

timer.Change(Period, TimeSpan.Zero);
}
catch (ObjectDisposedException)
{ }

}

123
2002

40 2003
41

59
474
123
2004

46
2005

40
2006

44
2007

46
2008

41

59
125
329

40 2009
41

123 125

125

Figure 4.3: Tokens generated by Tokenizer for an example

4.2.1.6 Data Preparation

The stored samples are read into numpy arrays, preprocessed, and filtered. We first perform
bare minimum preprocessing to clean the data—for both 1d and 2d samples, we scan all the
samples for each smell and remove duplicates if any exist.

We split the samples in the ratio of 70-30 for training; i.e., 70% of the samples are used
for training a model while 30% samples are used for evaluation. We limit the maximum
number of positive/negative training samples to 5,000. Therefore, for instance, if negative
samples are more than 5,000, we drop the rest of the samples. We perform model training
using balanced samples i.e., we balance the number of samples for training by choosing
the smaller number from the positive and negative sample count; we discard the remaining
training samples from the larger side. Table 4.3 presents an example of data preparation.

Table 4.3: Number of samples in each step of preparing input data

Initial samples 70-30 split Applying max limit Balancing

Positive Training 4,961 3,472 3,472 3,472
Evaluation 1,489 1,489 1,489

Negative Training 175,623 122,936 5,000 3,472
Evaluation 52,687 52,687 52,687

Each individual input instance, either amethod in the case of implementation smells, or a
class in the case of design smells, is stored in the appropriate data structure depending upon

74 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

the model that will use it. In 1d representation, each individual input instance is represented
by a flat 1d array of sequences of tokens, compatible for use with the rnn and the cnn-1d
models. In the 2d representation, each input instance is represented by a 2d array of tokens,
preserving the original statement-by-statement delineation of source code thus providing
the grid-like input format that is required by cnn-2d models. All the individual samples
are stored in a few files (where each file size is approximately 50 mb) to optimize the I/O
operations due to a large number of files. We read all the samples into a numpy array and
we filter out the outliers. In particular, we compute the mean input size and discard all the
samples with length over one standard deviation away from the mean. This filtering helps
us keep the training set in reasonable bounds and avoids waste of memory and processing
resources. We pad the input array with zeros to the extent of the longest remaining input
in order to create vectors of uniform length and bring the data in the appropriate format for
using with the deep learning models. Finally, we shuffle the array of input samples along
with its corresponding labels array.

4.2.2 Architecture of Deep Learning Models

In this section, we present the architecture of the neural network models that we use in this
study. The Python implementation of the experiment using the Keras library can be found
online.4

4.2.2.1 cnn Model

Figure 4.4 presents the architecture of cnn model used to detect smells. This architecture
is inspired by typical cnn architectures used in image classification [KSH12] and consists
of a feature extraction part followed by a classification part. The feature extraction part is
composed of an ensemble of layers, specifically, convolution, batch normalization, and max
pooling layers. This set of layers form the hidden layers of the architecture. The convolution
layer performs convolution operations based on the specified filter and kernel parameters
and computes accordingly the network weights to the next layer, whereas the max pooling
layer effectuates a reduction on the dimensionality of the feature space. Batch normalization
[IS15] mitigates the effects of varied input distributions for each training mini-batch, thus
optimizing training. In order to experiment with different configurations, we use one, two,
and three hidden layers.

The output of the last max pooling layer is connected to a dropout layer. Dropout per-
forms another type of regularization by ignoring some randomly selected nodes during
training in order to prevent over-fitting [SHK+14]. In our experiments we set the dropout
rate for the layer to be equal to 0.1 which means that the nodes to be ignored are randomly
selected with probability 0.1.

The output of the last dropout layer is fed into a densely connected classifier network
that consists of a stack of two dense layers. These classifiers process 1d vectors, whereas the

4https://github.com/tushartushar/DeepLearningSmells

https://github.com/tushartushar/DeepLearningSmells

75 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

incoming output from the last hidden layer is a 3D tensor (that corresponds to height and
width of an input sample, and channel; in this case, the number of channels is one). For this
reason, a flatten layer is used first, to transform the data in the appropriate format before
feeding them to the first dense layer with number of units = 32 units and relu activation. This
is followed by the second dense layer with one unit and sigmoid activation. This last dense
layer comprises the output layer and contains a single neuron in order to make predictions
on whether a given instance belongs to the positive or negative class in terms of the smell
under investigation. The layer uses the sigmoid activation function in order to produce a
probability within the range of 0 to 1.

Convolution layer

Batch normalization layer

Max pooling layer

Dropout layer

Flatten layer

Dense layer 1

Dense layer 2

Inputs

Output

Repeat this set of hidden
units according to

specified configuration

Figure 4.4: Architecture of employed cnn

We use dynamic batch size depending upon the size of samples to train. We divide the
training sample size by 512 and use the result as the index to choose one of the items in the
possible batch size array (32, 64, 128, 256). For instance, we use 32 as batch size when the
training sample size is 500 and 256 when the training sample size is 2000.

The hyper-parameters are set to different values in order to experiment with different
configurations of the model. Table 4.4 lists all the different values chosen for the hyper-
parameters. We execute cnn models for 144 configurations that result from generating
combinations of different values of hyper-parameters and number of repetitions of the set
of hidden units. We label each configuration between 1 and 144 where configuration 1 refers
to number of repetitions of the set of hidden units = 1, number of filters = 8, kernel size = 5,
and pooling window size = 2. Similarly, configuration 144 refers to number of repetitions
of the set of hidden units = 3, number of filters = 64, kernel size = 11, and pooling window
size = 5. Both the 1d and 2d variants use the same architecture replacing the 2d version of
Keras layers for their 1d counterparts.

We ensure the best attainable performance and avoid over-fitting by using early stop-

76 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

Table 4.4: Chosen values of hyper-parameters for the cnn model

Hyper-parameter Values
Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling layer {2, 3, 4, 5}
Maximum epochs 50

ping5 as a regularization method. It implies that the model may reach a maximum of 50
epochs during training. However, if there is no improvement in the validation loss of the
trained model for five consecutive epochs (since patience, a parameter to early stopping
mechanism, is set to five), the training is interrupted. Along with it, we also use model
check point to restore the best weights of the trained model.

For each experiment, we compute the following performance metrics — accuracy, roc-
auc (Receiver Operating Curve-Area Under Curve), precision, recall, F1, and average pre-
cision score. We also record the actual epoch count where the models stopped training
(due to early stopping). After we complete all the experiments with all the chosen hyper-
parameters, we choose the best performing configuration and the corresponding number of
epochs used by the experiment and retrain the model and record the final and best perfor-
mance of the model.

4.2.2.2 rnn Model

Figure 4.5 presents the architecture of the employed rnn model which is inspired by state-
of-the-art models in natural language modeling that employ an lstm network as a recurrent
layer [SSN12]. The model consists of an embedding layer followed by the feature learning
part — a hidden lstm layer. It is succeeded by the regularization (realized by a dropout
layer) and classification (consisting of a dense layer) part.

Embedding layer

LSTM layer

Dropout layer

Dense layer

Inputs

Output

Repeat the hidden unit
according to specified

configuration

Figure 4.5: Architecture of employed RNN

The embedding layer maps discrete tokens into compact dense vector representations.
One of the advantages of the lstm networks is that they can effectively handle sequences of

5https://keras.io/callbacks/

https://keras.io/callbacks/

77 / 168 4.2. DETECTING SMELLS USING DEEP LEARNING

varying lengths. To this end, in order to avoid the noise produced by the padded zeros in the
input array, we set the mask_zero parameter to True provided by the Keras embedding layer
implementation. Thus the padding is ignored and only the meaningful part of the input
data is taken into account. We set dropout and recurrent_dropout parameters of lstm layer
to 0.1. The regular dropouts mask (or drop) network units at inputs and/or outputs whereas
recurrent dropouts drop the connections between the recurrent units along with dropping
units at inputs and/or outputs [GG15]. The output from the embedding layer in fed into the
lstm layer, which in turn outputs to the dropout layer. As in the case of the cnn model,
we experiment for different depths of the rnn model by repeating multiple instances of the
hidden layer.

The dropout layer uses a dropout rate equal to 0.2, which we empirically found effec-
tive for preventing over-training, yet conservative enough for avoiding under-training. The
dense layer, which comprises the classification output layer, is configured with one unit and
sigmoid activation as in the case of the cnn model. Similarly to the cnn model, we use early
stopping (with maximum epochs = 50 and patience = 2) and model check point callbacks.
Also, we use the dynamic batch size selection as explained in the previous subsection.

We try different values for the model hyper-parameters. Table 4.5 presents different
values selected for each hyper-parameter. We measure the performance of the rnn model
in 18 configurations by forming the combinations produced by the different chosen values
of hyper-parameters and the number of repetitions of the set of hidden units.

Table 4.5: Chosen values of hyper-parameters for the rnn model

Hyper-parameter Values
Dimensionality of embedding layer {16, 32}
lstm units {32, 64, 128}
Maximum epochs 50

As described earlier, we pick the best performing hyper-parameters and number of
epochs and retrain the model to obtain the final and best performance of the model.

4.2.3 Hardware Specification

We perform all the experiments on the super-computing facility offered by grnet (Greek
Research and Technology Network). The experiments were run on gpu nodes (NVidia K40).
Each gpu incorporate 2880 cuda cores. We request 1 gpu node with 64 gb of memory for
most of the experiments while submitting the job to the super computing facility. Some rnn
experiments require more memory to perform the training; we request 128 gb of memory
for them.

78 / 168
4.3. ANALYZING CONFIGURATION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

4.3 AnalyzingConfigurationCode forQuantitativeMain-
tainability Assessment

We discuss the protocol that we used to select and download repositories containing Puppet
code in this section. We also discuss the detection mechanism that we employ for detecting
configuration smells using our tool Puppeteer.

4.3.1 Selecting and Downloading Puppet repositories

We follow the procedure given below to select and download the repositories.
We employ GHTorrent [Gou13, GS12] to select GitHub repositories to download. There

are various options to choose from to select the subject systems such as number of commits
and committers, stars, and number of relevant files in the repository. Each of the options
(or their combinations) present different trade-offs. For instance, there are only 838 Puppet
repositories that have five or more stars. We wanted to analyze larger number of repos-
itories to increase the generalizability of the observations. Reducing the number of stars
as a selection criterion would have resulted in more number of repositories; however, the
significance of the criterion would have reduced. A high number of commits in a repository
shows continuous evolution and thus we chose number of commits as the selection crite-
rion. We choose to download all the repositories where the number of commits was more
than or equal to 40. The above criterion provide us a list of 5,387 Puppet repositories to
download. We download 4,621 repositories except some private ones.

Table 4.6 summarizes the characteristics of the downloaded repositories. We observed,
by random sampling, that the downloaded repositories were either standalone Puppet-only
repositories or system repositories (where production code as well as configuration code
has been put together into a repository).

Table 4.6: Characteristics of the Downloaded Repositories

Attributes Total count
Repositories 4,621
Puppet files 142,662
Class declarations 132,323
Define declarations 39,263
File resources 117,286
Package resources 49,841
Service resources 18,737
Exec declarations 43,468
Lines of code (Puppet only) 8,948,611

We analyze the downloaded repositories to detect implementation and design configu-
ration smells. We use Puppet-Lint [Pup16c] tool to detect the majority of implementation
configuration smells. We execute the tool on all the repositories and store the generated

79 / 168
4.3. ANALYZING CONFIGURATION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

output. In addition to using Puppet-Lint, we write our custom rules to detect the implemen-
tation configuration smells that the tool was not detecting (for instance, complex expression
and incomplete conditional). We then aggregate the number of individual implementation
smells that occur in each repository using the generated output and our mapping of best
practices to the implementation smells (see Table 3.3).

We developed a tool, Puppeteer [Sha19e] to detect design configuration smells listed in
Section 3.2.3.2. We discuss detection strategies of all the smells detected by Puppeteer in
the rest of the section. The generated data by the tools mentioned above for both the smell
categories for all the analyzed repositories can be found online [Sha].

4.3.2 Design Configuration Smells — Detection Strategies

This section discusses detection strategies that Puppeteer uses to identify design configura-
tion smells.

Multifaceted Abstraction: The detection strategy for the two forms of the smell is as
follows.

1. We compute a metric, ‘Physical resources defined per resource declaration’, for
each declared resource. We report the smell when the metric value is more than
one.

2. We compute lack of cohesion for the configuration abstractions to detect the
second form of the smell. In traditional software engineering, we use the lcom
(Lack of Cohesion Of Methods) [CK94] metric to compute lack of cohesion for
an abstraction. The same metric cannot be used for configuration code due to
its different structure and characteristics. We use the following algorithm to
compute lcom in a configuration code abstraction.

(a) Consider each declared element (such as file, package, service resources
and exec statements) as a node in a graph. Initially, the graph contains the
disconnected components (dc) equal to the number of elements.

(b) Identify the parameters of the abstraction, used variables, and literals (such
as file name). Call them as data members collectively.

(c) For each data member, repeat the following: identify the components that
uses the data member. Merge the identified components in a single compo-
nent.

(d) Compute lcom:

LCOM =

1

|DC| if |DC|> 0

1 otherwise

(4.6)

Note that we compute lcom for each class, ‘define’, and file. Therefore, it is quite
possible that the tool reports more than one instance of this smell in a single Puppet
file.

80 / 168
4.3. ANALYZING CONFIGURATION CODE FOR QUANTITATIVE MAINTAINABILITY

ASSESSMENT

Unnecessary Abstraction: We compute a metric namely ‘Size of the abstraction body’. A
zero value of the metric shows that the abstraction does not contain any declarations
and thus suffers from unnecessary abstraction smell.

Imperative Abstraction: We compute a metric namely ‘Total ‘exec’ declarations’ in a
given abstraction. The tool reports the imperative abstraction smell when the abstrac-
tion has more than two ‘exec’ declarations and ratio of the ‘exec’ declarations against
all the elements in the abstraction is more than 20%.

Missing Abstraction: We identify total number of configuration elements except classes
or defines that are not encapsulated in a class or a ‘define’. A module suffers from the
smell if there are more than two such elements in the module.

Insufficient Modularization: The detection strategy for the three forms of the smell is
as follows.

1. We count the number of classes and defines declared in a Puppet file. We report
the smell if a file defines more than one class and ‘define’.

2. We count the number of lines in an abstraction. If a class or ‘define’ contains
more than 40 lines of code, it suffers from the smell.

3. We compute maximum nesting depth for an abstraction. An abstraction with
maximum nesting depth more than three suffers from this smell.

Duplicate Block: We use the pmd-cpd [CPD16] tool to identify code clones. A module
suffers from this smell when a code clone of larger than 150 tokens gets identified in
the module.

Broken Hierarchy: For all the class definitions, we identify the inherited class (if any).
If the inherited class is defined in any other module, the class suffers from “broken
hierarchy” smell.

Unstructured Module: The detection strategy for the three forms of the smell is as fol-
lows.

1. We search for a folder named “manifests” in the root folder of the repository. If
the total number of Puppet files in the folder is more than five while there is no
folder containing the string “modules”, the smell gets detected.

2. We find a folder containing the string “modules” and treat all the sub-folders as
separate modules. Each module must have a folder named “manifests”. Absence
of the folder shows the presence of the smell.

3. In each module, we count the unexpected files and folders. Expected files and
folders are: “manifests”, “files”, “templates”, “lib”, “tests”, “spec”, “readme”, “li-
cense”, and “metadata”. A module with more than three such unexpected files
or folders suffers from the smell.

81 / 168 4.4. ANALYZING DATABASE CODE FOR MAINTAINABILITY ASSESSMENT

Dense Structure: Weprepare a graph for each repository to detect the smell. Eachmodule
is treated as a node and any reference from the module to another module is treated
as an edge. We, then compute average degree of the graph.

AvgDegree(G) =
2×|E|
|V |

(4.7)

where |E| and |V | are number of edges and nodes respectively. A graph with an
average degree higher than 0.5 suffers from Dense structure: smell.

Deficient EncapsulationWe count the number of global variables declared for each node
declaration, followed by at least one include statement. If a node declaration has one
or more such global variables, the module suffers from deficient encapsulation smell.

Weakened Modularity: We compute modularity ratio [BINF12] for each module as fol-
lows:

ModularityRatio(A) =
Cohesion(A)
Coupling(A)

(4.8)

where,Cohesion(A) refers to the number of intra-module references andCoupling(A)
refers to the number of inter-module references from module A. We report the smell
if the ratio is less than one.

4.4 AnalyzingDatabaseCode forMaintainabilityAssess-
ment

In this section, we discuss ourmethod to select andmine repositories as well as the detection
strategies that we employ in our tool DbDeo.

4.4.1 Mining Repositories

We used the following protocol to select the subject systems. We also illustrate the mecha-
nism that we employ in extracting sql statements and detecting smells.

4.4.1.1 Selecting Industrial Repositories

We approached two organizations sig (Software Improvement Group) and silo (Singular
Logic) and sought access to their (or their clients’) projects to analyze them. We analyzed a
total of 840 projects that belong to various domains including banking, crm, and telecom.

4.4.1.2 Selecting Open-source Repositories

We employ RepoReapers [MKCN17] to select subject systems for the study. RepoReapers
provides assessment about GitHub open-source repositories on eight dimensions (architec-
ture, community, continuous integration, documentation, history, license, issues, and unit

82 / 168 4.4. ANALYZING DATABASE CODE FOR MAINTAINABILITY ASSESSMENT

tests) along with number of stars. We select all the 16,057 repositories that score greater
than zero for eight or nine dimensions. We download these repositories one by one, looked
for sql statements in each repository, and discard the repositories that does not have any
sql statements.

4.4.1.3 Extracting sql Statements

We use regular expressions to extract sql statements from the acquired repositories in Db-
Deo. We implement a two-step process to extract sql statements. In the first step, we use
relaxed regular expressions optimized for speed and in the second step we use stringent
regular expression optimized for correctness.

4.4.1.4 Analyzing and Detecting Smells

We find 357 industrial projects and 2,568 open-source projects that contained sql state-
ments. Then, we compute metrics such as the number of select, create table, and insert
statements as well as the number of files belonging to each programming language and
corresponding total lines of code. Finally, we analyze all the sql statements from all the
repositories using our tool DbDeo to detect database schema smells. The raw data gener-
ated by the tool can be accessed online [Sha18a].

Table 4.7 shows some characteristics of the analyzed repositories. On average, industrial
projects are 3.87 times bigger than open-source projects by loc (average loc for industrial
and open-source projects are 617,617 and 159,328 respectively) and 5.05 times bigger by
number of sql statements (average number of sql statements for industrial and open-source
projects are 455 and 90 respectively). Although, create table statements are the major
source of information to detect schema smells, many times other sql statements are required
to detect these smells. For example, we require create table, create index, and select
statements in a repository to detect index abuse smell. Therefore, we extract select, insert,
update, and create index statements also in addition to create table statements. We
analyze 393,989 sql statements from 2,925 repositories (on average ≈ 135 sql statements
per repository).

4.4.2 DbDeo and Detection Strategies for Database Smells

We developed DbDeo — an open-source database smell detection tool [Sha18b]. The tool
has a meta-model generator component that uses the third-party library SQLParse6 to parse
sql statements and prepare a meta-model. The meta-model component defines abstractions
such as CreateTableStmt and TableColumn and organizes them in a hierarchical structure.
For instance, a CreateTableStmt object contains a list of TableColumn objects. These ab-
stractions contain information about the parsed sql statements. For example, one of the
attributes belonging to CreateTableStmt is totalColumnsInTable. The smell detection module
in turn uses the meta-model to detect database schema smells.

6https://github.com/andialbrecht/sqlparse

83 / 168 4.4. ANALYZING DATABASE CODE FOR MAINTAINABILITY ASSESSMENT

Table 4.7: Characteristics of the analyzed industrial (I) as well as open-source (OSS) reposi-
tories

Attributes I OSS
Initial set of repositories 840 16,057
Repositories with sql statements 357 2,568
Files 2,559,984 3,297,932
Lines of code (source code only) 220,489,273 409,155,497
select statements 51,652 74,096
create table statements 18,907 50,682
insert statements 74,416 66,830
update statements 10,454 29,002
create index statements 7,152 10,798

In the rest of this section, we discuss detection strategies employed by DbDeo to detect
database smells.

Compound attribute: We look for pattern-matching expressions in an sql query. In a
select statement, we check the presence of regex in a where clause. We inquire
whether a comma is used to separate values that are inserted against an attribute
using an insert statement. For update statements, we check the use of a comma in
the set clause.

Adjacency list: We look for a foreign key constraint referring to an attribute in the same
table.

Metadata as data: We look for a schema definition containing only three attributes. We
detect the smell if we find two of the attributes, among three, of type varchar.

Multi-column attribute: We check the schema for a pattern ‘<attribute>’N where N is
a number. We detect this smell in the table, if the schema has more than one attribute
that matches with the above pattern.

Clone tables: We check all the schema definitions within a database for a pattern ‘<Table
name>’N where N is a number. We conclude that a database has this smell when the
database has two or more tables matching with the above pattern.

Values in attribute definition: We detect the smell by checking the schema for “enum”
or “check” where the construct imposes a restriction on the possible values that can
be entered for an attribute.

Index abuse: Missing indexes — We identify this variant of the smell when there exists at
least one table and the number of indexes in the database are zero.

Insufficient indexes — commonly available database vendors support creating indexes
for primary keys implicitly. We look for missing indexes for foreign keys to detect
this smell variant.

84 / 168 4.4. ANALYZING DATABASE CODE FOR MAINTAINABILITY ASSESSMENT

Unused indexes — We identify this variant when the indexed attributes don’t appear
in any query.

God table: We count the total number of attributes defined in a schema definition. The
table suffers from this smell if the number of attributes defined in the table crosses a
threshold (currently we use 10 attributes as a threshold).

Overloaded attribute names: We scan all the attributes and their properties in schema
definitions. If we find two or more attributes that have an identical name but defined
as different data types, we report this smell.

We also considered detecting the remaining four smells automatically. However, we
found it technically challenging to detect them automatically with high accuracy. For in-
stance, superfluous key can be detected automatically if we have both the database schema
and the data. However, devising heuristics without looking into data is prone to high false-
positives.

4.4.3 Accuracy of DbDeo

We selected ten repositories randomly, performed each step listed in Section 4.4.1 (i.e., ex-
tract sql code, compute basic metrics, and detect smells) on these repositories, and analyzed
the output of each step.

4.4.3.1 Accuracy of the sql Statements Extraction

An sql statement may appear in host source code either independently (in separate files)
or embedded in the host source code. Majority of the times, an embedded sql statement
receives some or all arguments dynamically by the host code. This property, along with
diverse vendor-specific syntax of sql statements, makes it difficult to cover all forms of sql
statements and extract them accurately using regular expressions. Brink et al. [BLV07] also
reveals challenges in separating embedded sql statements from host source code consid-
ering possible variations in host programming language and vendor specific sql syntaxes.
Given the importance of the extracted sql statements’ quality and associated challenges,
we first assess the quality of the extracted sql statements.

As mentioned earlier, DbDeo extracts sql statements in two steps. In the first step, it
extracts the sql statements embedded in the source code using generic regular expressions.
The tool employs a few heuristics and stringent regular expressions in the second step. The
second step is rigorous and relatively more time consuming. Extracting potential sql state-
ments in the first step and then cleanse them gives us performance without compromising
on the quality of the extracted statements.

We manually analyzed all the statements in the selected ten repositories and classified
them either as an sql statement, or as an incomplete sql statement, an extraneous sql
statement, or a non-sql statement. An extraneous sql statement has valid sql statement

85 / 168 4.4. ANALYZING DATABASE CODE FOR MAINTAINABILITY ASSESSMENT

followed by extraneous text or code that is not part of the sql statement but was matched
by the used regular expression.

Table 4.8 shows the performance of the sql statement extraction process. We found
two incomplete and two non-sql statements in the extracted statements. One of the incom-
plete sql statements is CREATE TABLE xxx.yyy (…). Similarly, one of the non-sql statements
is SELECT RANGE FROM ARCHIVE... The statement is written as a comment but fulfils sql
grammar and thus gets extracted by the tool.

Table 4.8: Performance of the sql extraction process

Total sql statements 818
Incomplete sql statements 2
Extraneous sql statements 0
Non-sql statements 2

4.4.3.2 Accuracy of Smell Detection

We detect database smells in all the ten repositories using DbDeo. We then verify each
detected smell manually to measure the accuracy of the tool. Table 4.9 shows the total
number of detected instances for each smell as well as the identified false-positive instances.

Table 4.9: Detected smells and identified false-positives

Smells #Instances Smells #Instances
Compound attribute 4 (0) Adjacency list 0 (0)
God table 26 (0) Values in attribute definition 0 (0)
Metadata as data 3 (0) Multicolumn attribute 15 (0)
Clone table 23 (0) Overloaded attribute name 26 (2)
Index abuse 30 (0)

As the table shows, we identified two false-positive instances in detected smells. The
first false-positive instance of overloaded attribute names smell is found in the following
create table statement (shown partially).�

1 CREATE TABLE ‘sqrl_nonce‘ (∗ ‘id‘ INT UNSIGNED AUTO_INCREMENT NO NULL PRIMARY KEY,
2 ∗ ‘nonce‘ CHAR(64) NOT NULL,
3 …� �

The tool detects the smell because the employed parser interprets ‘*’ as the name of an
attribute and the tool found another such attribute defined as different type in a different
table. However, a manual inspection reveals that this sql statement exists in a repository
written mainly in C. The above sql statement appears in a comment and the parser used in
the tool does not differentiate comments from the rest of the code. Similarly, the source of
another false-positive is also a misinterpretation by the parser. Apart from these instances,
we find other detected instances as genuine cases of schema smells.

Chapter 5

Results and Discussion

The process of getting results is more important than the results
itself.

In this chapter, we elaborate on the results that we obtained from our experiments and
our documented observations. We present results from our maintainability analysis on C#,
configuration, and database code as well as from our exploration on applying deep learning
to detect code smells.

5.1 Results of Maintainability Analysis on Production
Code

This section presents the results gathered from the maintainability analysis that we carried
out for C# repositories and our observations w.r.t. each research question addressed.

5.1.1 P-RQ1. What is the distribution of implementation, design,
and architecture smells in C# code?

Approach
We compute the total number of detected smells for all the smells belonging to implemen-
tation, design, and architecture smell categories.

Results
Tables 5.1, 5.2, and 5.3 list the total number of instances detected for each smell. From the
implementation smells side, magic number and long statement are the most frequently oc-
curring smells. On the other hand, virtual method call from constructor is the least occurring
implementation smell.

86

87 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

We observe that analyzed C# code on average contains one magic number per 16 lines
of code. It is surprizing to see a large number of magic number smells despite the fact
that Designite excludes literals 0 and 1 while detecting the smell.

At design granularity, cyclic-dependent modularization and unutilized abstraction are the
most frequently occurring smells. On the other hand, Deep hierarchy is the least occurring
design smell.

Interestingly, duplicate abstraction is one of the most frequently occurring design smells
but duplicate code is one of the least frequently occurring implementation smells. It is be-
cause the scope of the two smells differs significantly; clones belonging to duplicate abstrac-
tion occur anywhere in a project (but not in the same method) while clones belonging to
duplicate code only occur within a method.

Table 5.1: Distribution of Implementation Smells

Implementation smell #Instances Smell density
Complex Conditional 21,643 0.4389
Complex Method 95,244 1.9317
Duplicate Code 17,921 0.3634
Empty Catch Block 14,560 0.2953
Long Identifier 7,741 0.1570
Long Method 17,521 0.3553
Long Parameter List 79,899 1.6205
Long Statement 462,491 9.3805
Magic Number 2,993,353 60.7130
Missing Default 23,497 0.4765
Virtual Method Call from Constructor 4,545 0.0921

Table 5.3 lists the total number of architecture smells in all the analyzed repositories.
The table reveals that the cyclic dependency is the most frequently occurring architecture
smell followed by feature concentration smell. One potential reason for the cyclic dependency
to occur in a high volume is the permutations of the cycles due to one dependency that is
mainly responsible for introducing a cycle. For instance, assume we have three components
A, B, and C with the following dependencies: A depends on B, A depends on C, B depends
on A, and C depends on B. Now, since B depends on A, not only the tool will detect a cyclic
dependency between component A and B, but also another cycle among A, B, and C.

The dense structure smell has been detected the least number of times among the detected
smells. This can mainly be attributed to the fact that, by definition, the smell can be detected
at most once in a repository while all other architecture smells can be spotted multiple times
in a repository. The smell has been detected in only approximately 10% of the analyzed
repositories. We observed that the median of loc computed for all the analyzed repositories
is 4,391.5 while it is 29,147.5 for the repositories where the smell has been detected. It
clearly indicates that the smell is more prone to occur in large repositories. However, the

88 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

Table 5.2: Number of detected instances and smell density (per kloc) of design smells in the
analyzed repositories

Design smell #Instances Smell density
Cyclically-dependent Modularization 193,188 2.3238
Unutilized Abstraction 182,638 2.1969
Duplicate Abstraction 118,429 1.4245
Unnecessary Abstraction 89,340 1.0746
Deficient Encapsulation 57,606 0.6929
Insufficient Modularization 35,595 0.4282
Broken Modularization 32,154 0.3868
Broken Hierarchy 29,668 0.3569
Unfactored Hierarchy 25,352 0.3049
Rebellious Hierarchy 23,371 0.2811
Imperative Abstraction 18,640 0.2242
Unexploited Encapsulation 11,299 0.1359
Cyclic Hierarchy 6,736 0.0810
Wide Hierarchy 4,838 0.0582
Multipath Hierarchy 3,359 0.0404
Missing Hierarchy 2,688 0.0323
Multifaceted Abstraction 2,104 0.0253
Hub-like Modularization 1,468 0.0177
Deep Hierarchy 286 0.0034

Table 5.3: Number of detected instances and smell density (per kloc) of architecture smells
in the analyzed repositories

Architecture smell #Instances Smell density
Cyclic Dependency 34 556 0.4157
Feature Concentration 17 420 0.2095
Scattered Functionality 11 623 0.1398
Unstable Dependency 10 195 0.1226
God Component 4 774 0.0574
Ambiguous Interface 852 0.0102
Dense Structure 302 0.0036

large size of a repository is not the only deciding factor. We find that 364 repositories
are larger than the median loc 29,147.5 where the smell does not occur. It implies that
evolution of a software focused on quality may result in maintainable software systems.

Both feature concentration (at architecture granularity) and multifaceted abstraction
(at design granularity) capture the cohesion aspect. It is surprising to note that the
feature concentration smell occurs more often at architecture granularity (23% of the
components) than its design granularity counterpart — multifaceted abstraction (0.3%

89 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

of all the types). This clearly indicates that components are more prone to violate the
single responsibility principle than the classes at design granularity. Therefore the
software developers must pay attention to the component composition and cohesion
when they extend the component.

5.1.2 P-RQ2. Do the detected smell instances belonging to different
granularities correlate?

Approach
We compute the total instances of implementation, design, and architecture smells in each
repository. We then compute the Spearman correlation coefficient between the detected
instances of implementation and design smells. Similarly, we find the Spearman correla-
tion between the sums of detected architecture and design smells. Further, we compute
the Spearman coefficient between the individual pairs of architecture and design smells to
observe the fine-grain correlation.

Results
Figure 5.1a presents a scatter graph showing the co-occurrence between total instances of
detected implementation and design smells. The Spearman correlation coefficient between
implementation and design smell instances detected is 0.78059 (with p-value < 2.2e−16).

It shows that high volume of design (or implementation) smells is a strong indication
of the presence of high volume of implementation (or design) smells in a C# project.

Similarly, the number of detected instances of architecture and design smells exhibit
a high correlation coefficient (ρ) value of 0.86787 (with p-value <2.2e− 16). Figure 5.1b
shows a scatter plot between total detected instances of architecture and design smells in
each repository. This indicates that architecture smells exhibit very strong positive
correlation with design smells. Therefore, it can be inferred that a large population of
design smell instances present in a repository indicates the presence of a high number of
architecture smell instances and vice-versa. These observations might encourage a software
developer to find and refactor architecture smells when she finds a large number of design
smells in her software system.

To find deeper and more fine-grained relationships, we compute Spearman correlation
coefficients between individual types of design smells and architecture smells. Figure 5.2
presents Spearman correlation coefficient values for all 133 architecture-design smell pairs
in a heatmap. The darker color of a cell in the heatmap shows stronger correlation. A cell
with coefficient in the red color shows statistical insignificant values (p-value greater than
or equal to 0.005).

The heatmaps in figure 5.2 show both the Spearman and Pearson correlation coefficient
values for all 133 architecture-design smell pairs. The darker color of a cell in the heatmap

90 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

0 500 1000 1500 2000 2500

0
20
0

40
0

60
0

80
0

10
00

Implementation smells

D
es

ig
n

S
m

el
ls

(a) Co-occurrence between detected imple-
mentation and design smells

0 200 400 600 800 1000

0
50

10
0

15
0

Design smells
A

rc
hi

te
ct

ur
e

S
m

el
ls

(b) Co-occurrence between detected design
and architecture smells

Figure 5.1: Scatter plots showing co-occurrence between smells in two granularities

shows stronger correlation. A cell with coefficient in the red color shows statistically in-
significant values (p-value greater than or equal to 0.005).

The correlation coefficient values show almost no correlation between individual ar-
chitecture and design smells. The highest correlation shown by the smell pair unutilized
abstraction and feature concentration (ρ = 0.27). Low correlation results are inline with the
results presented by Macia et al.[MGP+12] where they found that 60% of the automatically
detected code smells are not correlated with architecture smells.

The correlation analysis presented in this research question reveals that cumulatively
design and architecture smells show a very strong correlation. However, fine-grain
correlation analysis suggests that both the kinds of smells are not correlated and do
not follow a monotonic relationship.

5.1.3 P-RQ3. Is the principle of coexistence applicable to smells in
C# projects?

Approach
We compute the average intra-category co-occurrence for each smell. Co-occurrence is
commonly used in bio-geography; we use the co-occurrence index used byConnor et al. [CS78].
The following equation computes the co-occurrence coefficient C between smells s1 and s2.

C(s1,s2) =
n1×n2

N
(5.1)

91 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

Cyclic Dependency

Unstable Dependency

Ambiguous Interface

God Component

Feature Concentration

Scattered Functionality

Dense Structure

Imperative Abstraction

Unnecessary Abstraction

Multifaceted Abstraction

Unutilized Abstraction

Duplicate Abstraction

Deficient Encapsulation

Unexloited Encapsulation

Broken Modularization

Insufficient Modularization

Hub like Modularization

Cyclically dependent Modularization

Wide Hierarchy

Deep Hierarchy

Multipath Hierarchy

Cyclic Hierarchy

Rebellious Hierarchy

Unfactored Hierarchy

Missing Hierarchy

Broken Hierarchy

0.04 -0.05 0.03 -0.07-0.05-0.09 0.02

-0.10-0.11-0.01 0.07 0.04 -0.07-0.07

0.00 -0.01 0.00 -0.01 0.00 0.00 0.00

-0.11-0.17 0.00 -0.07 0.27 -0.09-0.08

0.00 -0.06 0.00 -0.04-0.03 0.01 -0.01

-0.01-0.08-0.01 0.00 -0.08 0.00 -0.02

0.03 -0.03 0.00 -0.04-0.04 0.03 0.03

-0.05-0.06-0.01 0.03 0.00 -0.04-0.04

0.08 -0.05 0.00 -0.09-0.07 0.10 0.04

0.07 -0.01 0.00 -0.01-0.03 0.12 0.06

0.12 -0.10 0.00 -0.09-0.18 0.10 0.04

0.00 -0.02 0.00 0.00 -0.04 0.05 0.00

0.00 -0.01 0.00 0.00 -0.01 0.00 0.00

0.00 -0.01 0.00 0.01 -0.03 0.00 0.00

0.01 -0.02 0.00 -0.02-0.03 0.05 0.00

0.01 -0.05 0.00 -0.05-0.05-0.01 0.00

0.02 -0.04 0.00 -0.02-0.04 0.00 0.00

0.04 -0.01 0.00 -0.02-0.02 0.02 0.03

-0.01-0.06 0.00 0.01 -0.06-0.02-0.01

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

S
p
e
a
rm

a
n
 co

rre
la

tio
n
 co

e
fficie

n
t

Figure 5.2: Correlation between individual architecture and design smells

Here, n1 and n2 are the number of detected instances of smells s1 and s2 respectively. N is
the total number of detected smells in the repository.

Results
Figures 5.3, 5.4, and 5.5 present the average co-occurrence for each smell for all the three
smell categories. Cyclic dependency shows the highest and dense structure shows the lowest
co-occurrence in the architecture smells category. For the design smells category, cyclically-
dependentmodularization and deep hierarchy exhibit the strongest andweakest intra-category
co-occurrence. Similarly, figure 5.5 shows that magic number and virtual method call from
constructor exhibit the highest and lowest co-occurrence respectively in the implementation
smells category.

It implies that whenever cyclic dependency, cyclically-dependent modularization, or
magic number smells are found in C# code, it is more likely to find other smells from

92 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

224.21

54.06

2.51

18.53

64.85

103.08

1.51

1 10 100 1000

Cyclic Dependency

Unstable Dependency

Ambiguous Interface

God Component

Feature Concentration

Scattered Functionality

Dense Structure

Average co-occurrence (log scale)

Figure 5.3: Average co-occurrence (intra-category) for architecture smells

1.47
0.31

0.03
3

1.94
0.95

0.19
0.53

0.58
0.02

3.17
0.08

0
0.06

0.11
0.38
0.42

0.04
0.49

0 0.5 1 1.5 2 2.5 3 3.5

Imperative Abstraction
Unnecessary Abstraction
Multifaceted Abstraction

Unutilized Abstraction
Duplicate Abstraction

Deficient Encapsulation
Unexploited Encapsulation

Broken Modularization
Insufficient Modularization

Hub-like Modularization
Cyclically-dependent Modularization

Wide Hierarchy
Deep Hierarchy

Multipath Hierarchy
Cyclic Hierarchy

Rebellious Hierarchy
Unfactored Hierarchy

Missing Hierarchy
Broken Hierarchy

Average co-occurrence

Figure 5.4: Average co-occurrence (intra-category) for design smells

the same smell category in the project. On the other hand, the smells dense structure,
deep hierarchy and virtual method call from constructor occur more independently.

Co-occurrence of implementation smells (figure 5.5) shows a large variation due to the huge
difference in the number of detected instances for each smell in the category.

5.1.4 P-RQ4. Does smell density depend on the size of the C# repos-
itory?

Approach
We compute smell density for implementation, design, and architecture smells for all the
analyzed repositories. We draw scatter plots between lines of code in a repository and the
corresponding smell density for all the three smell categories. We also compute correlation

93 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

356.79

1257.03

6764.83

242.24

65.59

337.65

1616.11

70258.65

293216.29

161.9

55.32

1 10 100 1000 10000 100000 1000000

Complex Conditional

Complex Method

Duplicate Code

Empty Catch Block

Long Identifier

Long Method

Long Parameter List

Long Statement

Magic Number

Missing Default

Virtual Method Call from Constructor

Average co-occurrence (log scale)

Figure 5.5: Average co-occurrence (intra-category) for implementation smells

coefficients for implementation, design, and architecture smell density and the repository
size (in terms of loc).

Results
Figure 5.6 shows the distribution of smell density for implementation, design, and archi-
tecture smells against lines of code. A visual inspection of the above plots shows that the
distribution of implementation as well as architecture smell density is more scattered and
random than the distribution of design smell density. We compute the Spearman correla-
tion coefficient between smell densities for all the three categories and loc. The analysis
reports 0.27800, −0.25426, and 0.37476 as correlation coefficient (p-value < 2.2e − 16)
w.r.t. implementation, design, and architecture smell density respectively. The results show
a weak positive correlation for implementation smell density and weak negative correlation
for design smell density with size of the project.

Given the low values for both the coefficients, the size of the project has low impact
on the number of design and implementation smells. Architecture smell density ex-
hibits moderate positive correlation indicating that the number of architecture smells
increases as the size of the project grows.

5.1.5 P-RQ5. Are architecture smells collocated with design smells?

Approach
The architecture and design smells differ in granularity, hence they get reported in a set of
components and a set of classes, respectively. To analyze whether both kinds of smells are
collocated, we identify a set of participating classes for each architecture smell. A partic-
ipating class contributes non-trivially to the occurrence of an architecture smell instance.

94 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

0 50000 100000 150000 200000

0
10
0

20
0

30
0

40
0

LOC

Im
pl

em
en

ta
tio

n
S

m
el

ls
 D

en
si

ty

0 50000 100000 150000 200000
0

20
40

60
80

10
0

LOC

D
es

ig
n

S
m

el
ls

 D
en

si
ty

0 50000 100000 150000 200000

0
2

4
6

8

LOC

A
rc

hi
te

ct
ur

e
S

m
el

ls
 D

en
si

ty

Figure 5.6: Smell density for implementation, design, and architecture smells against lines
of code

Specifically, a design smell instance D and architecture smell instance A are considered to
be “collocated” if a class reported by the instance D participates in the A instance.

We create a table containing all the classes belonging to all the analyzed repositories
with their corresponding total architecture and design smell instances. We create 2 × 2
contingency matrices for both the smell categories and compute the phi-coefficient. Phi-
coefficient, or mean square contingency coefficient, measures the degree of association be-
tween two binary variables. We perform the analysis for cumulative instances of both smell
categories as well as 133 individual smell pairs. Naturally, the frequencies of architecture
and design smell instances are not same due to the difference in the granularity and scale;

95 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

thus the instances of architecture smells are significantly lower than those of design smells.
We have to normalize both numbers for semantically correct analysis and therefore we nor-
malize the number of design smells by multiplying the ratio of the specific design and ar-
chitecture smell.

Table 5.4: Contingency matrix for a design and architecture smell

Design smell
1 0

Architecture smell 1 a b
0 c d

Table 5.4 shows the contingency matrix for a design and architecture smell pair. The
values of variables a, b, c, and d are used to compute phi-coefficient. However, as described
above, we normalize the number of design smells instances (i.e., c).

c′ = c× Number of architecture smells
Number of design smells

(5.2)

We compute the phi-coefficient using the following equation.

φ =
a×d − c′×d√

(a+b)× (c′+d)× (a+ c′)× (b+d)
(5.3)

Mechanism to infer participating classes
To find out the collocation between architecture and design smell instances, we identify
participating classes for each architecture smell. A participating class contributes to the
architecture smell non-trivially. We formulated and implemented the following heuristics
to infer participating classes for each architecture smell.

• Cyclic dependency: For each identified cycle, we find the classes (belonging to each
component contributing to the formation of the cycle) that participate in the cycle.
We include all these classes to the participating classes list.

• Unstable dependency: This smell occurs when a component depends on another com-
ponent which is less stable than itself. In this case, all the classes that refer to classes
of a less stable component are the participating classes for this smell.

• Ambiguous interface: We detect the smell when a component has only one public or
internal method. We assign as the class responsible for the architecture smell the one
that has the public or internal method.

• God component: The tool detects two variants of this smell. First, using loc-based
detection where the loc of the component crosses a threshold and second, using noc
(Number of Classes)-based detection where the number of classes in the component
crosses a threshold.

96 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

For the first smell variant, we sort the classes in a component by loc in descending
order. Then, we add classes from this list to the participating classes list one by one
until the remaining size of the component becomes smaller than the threshold used for
the smell detection. For the other variant, we choose the smallest classes (by number
of methods) in the component assuming that these classes offer less functionality than
the rest of the classes in the component. We select classes one by one in increasing
order and add them to the list of participating classes until the remaining size of the
component (in terms of number of classes) becomes smaller than the used threshold.

• Feature concentration: We detect the smell by inferring a dependency graph for each
component. We find the size of disconnected sub-graphs within a component and sort
them in ascending order. We add all the classes belonging to the sub-graphs to the
participating classes list starting from the smallest sub-graph until the remaining sub-
graphs show smaller lcc (Lack of Component Cohesion) than the selected threshold.

• Scattered functionality: In this smell, classes scattered in multiple components realize
the same architectural concern. We identify these classes and tag them as participat-
ing for this architecture smell.

• Dense structure: We infer the dependency graph of the software, measure the degree
of each component (which is the number of other components the component refers
to), and sort them by decreasing degree. We add components one by one from this
sorted list to the participating components until the cumulative degree of remaining
components becomes smaller than the threshold used for detecting this smell. We
include all the classes belonging to the identified responsible components that refer
to classes belonging to other components.

Results
We found that cumulative collocation between architecture and design is low based on the
computed phi-coefficient = 0.32. We also computed phi-coefficients for individual architec-
ture and design smell pairs. Figure 5.7 shows collocation analysis heatmap of architecture
and design smells. Each cell shows the computed phi-coefficient between an architecture-
design smell pair.

The phi-coefficient between feature concentration and unutilized abstraction shows the
highest collocation. This collocationmakes sense because the presence of one ormore unuti-
lized abstractions increase the value of lcc for a component. This increased value of lcc in
turn leads to feature concentration smell as discussed in detection mechanism for the smell
(Section 4.1.2.2).

Along the expected lines, cyclically-dependent modularization design smell show rela-
tively higher collocation with cyclic dependency architecture smell. The smell also collocate
with scattered functionality and dense structure architecture smells. Cyclic-dependency mod-
ularization as well as both the architecture smells share the common characteristics i.e.,
coupling. It is understandable that presence of one of these smells indicates the presence of
other related smells.

97 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

Cyclic Dependency

Unstable Dependency

Ambiguous Interface

God Component

Feature Concentration

Scattered Functionality

Dense Structure

Imperative Abstraction

Unnecessary Abstraction

Multifaceted Abstraction

Unutilized Abstraction

Duplicate Abstraction

Deficient Encapsulation

Unexloited Encapsulation

Broken Modularization

Insufficient Modularization

Hub like Modularization

Cyclically dependent Modularization

Wide Hierarchy

Deep Hierarchy

Multipath Hierarchy

Cyclic Hierarchy

Rebellious Hierarchy

Unfactored Hierarchy

Missing Hierarchy

Broken Hierarchy

-0.07-0.04 0.00 0.36 0.25 -0.03 0.00

0.01 -0.03 0.18 0.00 -0.05 0.00 0.20

-0.05-0.03 0.00 -0.03-0.07-0.02 0.01

0.02 -0.01 0.24 0.39 0.60 0.04 0.27

0.09 0.02 0.05 0.19 0.14 0.14 0.23

0.02 -0.02 0.03 0.21 0.03 0.08 0.21

-0.01-0.03 0.01 -0.01-0.06 0.03 0.14

-0.06-0.04 0.00 0.17 0.06 -0.03 0.01

0.08 -0.02 0.01 0.01 -0.03 0.19 0.27

-0.02-0.04 0.00 -0.04-0.09 0.04 0.10

0.33 -0.02 0.07 0.20 0.00 0.40 0.44

-0.05-0.04 0.02 0.00 -0.09 0.02 0.04

-0.06-0.04 0.00 -0.04-0.09-0.02 0.00

-0.04-0.03 0.00 0.00 -0.07-0.01 0.03

-0.02-0.02 0.00 -0.01-0.06 0.03 0.05

-0.01-0.03 0.01 0.05 -0.03 0.01 0.18

0.01 -0.03 0.01 0.05 -0.02 0.02 0.15

-0.03-0.03 0.00 -0.03-0.08-0.01 0.08

-0.02-0.04 0.03 0.14 -0.02 0.01 0.16
0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56
P
h
i-co

e
fficie

n
t

Figure 5.7: Collocation analysis between architecture and design smells

The majority of the collocation coefficients shows very low or no collocation among
the smell pairs suggesting that the majority of the architecture and design smells do
not collocate with each other.

5.1.6 P-RQ6. Can the refactoring of design smells lead to fewer ar-
chitecture smells?

Approach
To further expand the analysis exploring the relationship between architecture and design
smells, we examine the impact of design smell refactorings on architecture smells.

In order to perform this analysis, we need to obtain the refactored state of the project
where all detected design smells are eliminated. It is prohibitively expensive to carry out
refactoring for all detected design smells for a large number of projects either manually or
automatically. There are numerous refactoring techniques that can be applied to refactor
a smell [SSS14] based on the context; the present set of tools cannot adopt an appropriate
refactoring automatically. Though it would be ideal to refactor all the projects to measure

98 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

the impact of the refactoring, given the above challenges it is not feasible. To overcome the
challenge, we simulate the refactored state in which we assume that all the design smells are
refactored. We propose a theoretical basis in which we map a set of design smells that may
impact the existence of an architecture smell, derive a set of consequences of the assumed
refactoring applied to remove each design smell instance, and analyze the code again to de-
tect the architecture smell instance considering the corresponding discovered consequences.

We illustrate the mechanism described above with the help of an example for cyclic de-
pendency architecture smell. Our theoretical base is that refactoring a cyclic dependency
modularization design smell may lead to the removal of a cyclic dependency architecture
smell. To find out whether the refactoring of a cyclic dependency modularization smell re-
moves a cyclic dependency architecture smell, we first find out the consequences of refactor-
ing an instance of a cyclic dependency modularization smell. The consequence of the refac-
toring is the removal of a dependency (say between X and Y classes) among all the classes
that participate in the cycle. Then, we detect the cyclic dependency architecture smell again,
this time considering that there is no dependency between classes X and Y. If the design
smell refactoring removes the dependency that was causing the architecture smell, then the
refactoring has an impact on the corresponding architecture smell.

We implement an extension of Designite to carry out the simulation. The extension
processes the smell information generated by Designite, uses the mapping defined in this
section, and computes the potential influences of design smell refactorings on architecture
smells. We simulate the refactoring separately for each architecture smell. We compare the
number of architecture smell instances before and after the refactoring.

Potential influences of design smell refactoring on architecture smells
We outline the theoretical basis in the form of potential influences of design smells refac-
toring corresponding to each architecture smell and mechanism to derive consequences of
design smells refactoring in the subsection below.

• Cyclic Dependency: Refactoring a cyclic-dependent modularization design smell may
influence the occurrences of a cyclic dependency architecture smell. We figure out
the number of participating components in a cyclic-dependent modularization smell
instance. If the number of participating components are more than one, then the
design smell may impact cyclic dependency smell instances. To know whether the
refactoring of an instance of a cyclic-dependent modularization removes any cyclic de-
pendency smell, we follow the following heuristic. A cyclic-dependent modularization
is removed when one of the dependencies in the cycle is removed. If classes A, B, and
C form a cycle then the smell cyclic-dependent modularization will no longer exist if
we remove a dependency (for instance C → A). In this case, we need to check if the
same class (say C) is present in the cyclic dependency architecture smell. If C is the
only class from its component in the cycle and has only one dependency to one of the
involved components, then the cyclic dependency architecture smell will be removed
by refactoring the cyclic-dependent modularization smell.

• Unstable dependency: Refactoring unutilized abstractionmay influence the occurrences

99 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

of this architecture smell. To know whether refactoring of an instance of unutilized
abstraction removes the unstable dependency smell, we recompute the instability met-
ric for each component after removing classes suffering from unutilized abstraction
smells.

• Ambiguous interface: Occurrences of ambiguous interface may get influenced by refac-
toring the unutilized abstraction design smell. We check whether the class responsi-
ble for the architecture smell is unutilized to find whether refactoring an instance of
unutilized abstraction removes the unstable dependency smell.

• God component: At first glance, one may think that refactoring insufficient modular-
ization may influence the occurrence of god component architecture smell. However,
refactoring insufficient modularization does not play a role in this context because
when one refactors it, the refactoring may reduce the size of the class but one has
to move the remaining functionality to another (possibly in a new) class. Hence, in
most cases component size does not change and there is no influence on god compo-
nent smell.

Carrying out refactoring for the unutilized abstraction design smell may impact the
occurrences of god component. For the first (loc-based) variant, we subtract the loc
associatedwith unutilized abstraction classes in the component and check the new loc
of the component against the corresponding threshold. For other (noc — Number of
Classes) variant, we reduce the number of classes suffering from unutilized abstraction
and detect the smell again.

• Feature concentration: Refactoring unutilized abstraction may influence the detec-
tion of the feature concentration architecture smell. To find whether refactoring an
instance of unutilized abstraction removes any instance of the feature concentration
smell, we recompute pcc after removing the classes suffering from unutilized abstrac-
tion.

• Scattered functionality: Refactoring unutilized abstraction may seem to influence the
detection of the scattered functionality architecture smell. However, if the class is not
used then it cannot participate in this architecture smell. Therefore, no refactoring of
any design smell is expected to influence the occurrence of this architecture smell.

• Dense structure: Theoccurrence of the dense structure architecture smell may get influ-
enced by the refactoring of the unutilized abstraction design smell. To find the impact
on the occurrence of a specific instance, we recompute the average degree of all the
components after removing classes suffering from unutilized abstraction and check
whether the dense structure smell still persists.

Results
Weemploy the extension of Designite that implement themechanism described above to fig-
ure out potential influences of design smells refactoring on architecture smells. We perform

100 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

the analysis using the extension and detect architecture smells in the same set of repositories
while taking the consequences of the design smells refactoring into consideration. Table 5.5
shows the number of architecture smells detected before and after the refactoring simula-
tion for design smells. Figure 5.8 shows the percentage of architecture smells removed after
the design smells refactoring.

Table 5.5: Architecture smell instances detected before and after the refactoring simulation
for design smells

Architecture smell #Instances (before) #Instances (after)
Cyclic Dependency 34 556 29 573
Unstable Dependency 10 195 9 431
Ambiguous Interface 852 599
God Component 4 774 3 235
Feature Concentration 17 420 13 301
Scattered Functionality 11 623 11 623
Dense Structure 302 284

14.42

7.49

29.69

32.24

23.65

0.00

5.96

0 10 20 30 40

Cyclic	Dependency

Unstable	Dependency

Ambiguous	 Interface

God	Component

Feature	Concentration

Scattered	Functionality

Dense	Structure

Figure 5.8: Removed architecture smells (in percentages) after simulating design smells
refactoring

God component and ambiguous interface are the most influenced architecture smells —
this indicates that refactoring design smells removes these two smells significantly. On the
other hand, there is no impact of design smells refactoring on scattered functionality and
there is a little impact on instances of dense structure.

The results of this exploration are inline with the collocation analysis. The colloca-
tion analysis shows high collocation for feature concentration (0.60), god component (0.39),
and ambiguous interface (0.24) with unutilized abstraction design smell. Hence, refactoring
unutilized abstraction lead to removing these three architecture smells as shown in the anal-
ysis presented in this section. Similarly, cyclic dependency and dense structure also exhibit
high collocation with cyclically-dependent modularization (0.33) and unutilized abstraction
(0.27).

101 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

With this exploration, we observe that refactoring smells at design granularity may
remove smells at architecture granularity to a degree as high as one third of the smells
(in case of god component). However, our exploration also leads to another impor-
tant observation — refactoring smells is important at all granularities; design smells
refactoring may remove some instances of architecture smells but a large number of
architecture smells remain even after all the design smells are refactored.

5.1.7 Discussion and Implications

In this section, we extend our discussion on the smell relationships explored in this work.
We also include implications for the software development community.

5.1.7.1 Discussion

We examine the collocation relationship between architecture and design smells; the results
show that they exhibit selective collocation. It implies that though architecture smells arise
from code and implementation choices made during the software development, their causal
domain is larger and they have their individuality different from smells at design granularity.

We explore correlations between architecture and design smells cumulatively as well
as between individual pairs. Very high correlations may indicate that a given smell is
superfluous. For example, tracking humans’ left-eye and right-eye colors will show an
extremely high correlation between the two, and consequently storing only eye color is
enough. Although, our analysis shows very strong correlation between the two kinds of
smells when considered cumulatively, we observed almost no correlation for the individual
smell pairs. This result demonstrates that each smell provides value-adding information.
Furthermore, interestingly, even the similar smells at different granularities do not show
strong correlation. Five architecture smells have corresponding similar smells at design
granularity; it means that these smells represent and capture the same concept at different
granularities. These smell pairs with their corresponding correlations are cyclic dependency
— cyclic-dependent modularization (ρ = 0.12), feature concentration — multifaceted abstrac-
tion (ρ = 0), scattered functionality — broken modularization (ρ = −0.04), god component
— insufficient modularization (ρ = 0.09), and ambiguous interface — imperative abstraction
(ρ = 0.03). The almost no correlation outlines the non-monotonic relationship between
these smell pairs and further emphasize the individuality of these smells.

We infer the following implications for the software development community.
Software development teams must detect, analyze, and refactor smells at all gran-

ularities. This implication is derived from our correlation analysis for smells arising
at different granularities. Our results show that the presence of high volume of de-

Implications of Our Findings

102 / 168 5.1. RESULTS OF MAINTAINABILITY ANALYSIS ON PRODUCTION CODE

sign smells indicates presence of high number of architecture smells and vice versa.
Existing tools (such as NDependa and SonarQubeb mainly detect implementation and
some design issues. Due to this limitation, a software development team using these
tools perceives only a limited set of quality issues and thus issues at higher granulari-
ties go unnoticed. Furthermore, we observed that a significant amount of architecture
smells persists even if all the detected design smells were refactored. This result also
emphasizes the importance of detecting and refactoring smells at all granularities.

The software development community must avoid cycles among classes as well as
among components to keep structure of the software easy to understand. Our results
show that cyclic dependencies at both design and architecture granularities occur the
most in open-source C# repositories. Higher number of cycles in a software introduce
tangles and make the software difficult to comprehend.

Software development teams must pay more attention to their code quality as size
of their software grows. This implication is derived from our analysis in which we
find that architecture smell density tends to increase as the software grows. Actively
used software systems grow; however, whether the software evolves by keeping the
focus on code quality defines maintainability of the software. For example, in our
analysis, dense structure smell has been detected in only approximately 10% of the
analyzed repositories. We observed that the median of loc computed for all the ana-
lyzed repositories is 4,391.5 while it is 29,147.5 for the repositories where the smell
has been detected. It clearly indicates that the smell is more prone to occur in large
repositories. However, the large size of a repository is not the only deciding factor.
We figure out that 364 repositories are larger than the median loc 29,147.5 where the
smell does not occur. It implies that evolution of a software focused on quality may
result in a maintainable software system.

ahttp://www.ndepend.com/
bhttps://www.sonarqube.org/

5.1.7.2 Secondary Uses of this Work

We have added support to detect seven architecture smells in Designite. The software de-
velopment community may use the tool to analyze their source code and improve main-
tainability of their code. The research community may utilize the tool to carry out studies
concerning code smells. The tool is available online [Sha16] and free for all academic pur-
poses.

Smells mining dataset is the basis of the research questions addressed in this work. The
dataset contains all the supported implementation, design, and architecture smells detected
in 3,209 open-source repositories. We have made the dataset available online [Sha19c]. The
software engineering research community may utilize it in many ways including bench-
marking and comparison as well as exploring other dimensions of source code with smells.

http://www.ndepend.com/
https://www.sonarqube.org/

103 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

5.2 Results of Detecting Smells using Deep Learning

In this section, we elaborate on the results of our experiments exploring the application of
deep learning methods for smell detection and present our observations.

5.2.1 D-RQ1. Is it possible to use deep learning methods to detect
code smells? If yes, which deep learning method performs su-
perior?

Approach
We prepare the input samples as described in Section 4.2.1. Table 5.6 presents the number
of positive and negative samples used for each smell for training and evaluation; cnn-1d
and rnn use 1d samples and cnn-2d uses 2d samples. As mentioned earlier, we train our
models with the same number of positive and negative samples. Sample size formultifaceted
abstraction (ma) is considerably low compared to other smells because each sample in this
smell is a class (other smells usemethod fragments). The one-dimensional sample counts are
different from their two-dimensional counterparts because we apply additional constraint
for outlier exclusion, on permissible height, in addition to the width.

Table 5.6: Number of positive (P) and negative (N) samples used for training and evaluation
for RQ1

cnn-1d and rnn cnn-2d
Training Evaluation Training Evaluation
p and n p n p and n p n

cm 3,472 1,489 51,926 2,641 1,132 45,204
ecb 1,200 515 52,900 982 422 45,915
mn 5,000 5,901 47,514 5,000 5,002 41,334
ma 290 125 22,727 284 122 17,362

Results
Figure 5.9 presents the performance (F1) of the models for the considered smells for all the
configurations that we experimented with. The results from each model perspective show
that performance of the models varies depending on the smell under analysis. Another
observation from the trendlines shown in the plots is that performance of the convolution
models remains more or less stable and unchanged for different configurations while rnn
exhibits better performance as the complexity of the model increases except formultifaceted
abstraction smell. It implies that the hyper-parameters that we experimented with do not
play a very significant role for convolution models.

Figure 5.10 presents the boxplots comparing for each smell performance of all trained
models, under all configurations. For complex method smell, both convolution models out-
perform the rnn. In between the convolution models, overall the various configurations
of the cnn-1d model appear accumulated around the mean, whereas cnn-2d shows higher

104 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

0 24 48 72 96 120 144
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

F1

CNN-1D CM
CNN-1D ECB
CNN-1D MN
CNN-1D MA

(a) Performance of CNN-1D

0 24 48 72 96 120 144
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

F1

CNN-2D CM
CNN-2D ECB
CNN-2D MN
CNN-2D MA

(b) Performance of CNN-2D

0 3 6 9 12 15 18
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1

RNN CM
RNN ECB
RNN MN
RNN MA

(c) Performance of RNN

Figure 5.9: Scatter plots of the performance (F1) exhibit by the considered deep learning
models along with their corresponding trendline

variance among the F1 scores obtained at different configurations. Though, cnn-1d shows
lower variance, the model has higher number of outliers compared to cnn-2d model. rnn
model performs significantly superior compared to convolution models for empty catch
block smell with an F1 score of 0.22 versus 0.04 and 0.02 achieved by cnn-1d and cnn-
2d respectively; the performance of the model, however, shows a wide variation depending
on the chosen hyper-parameters. For magic number smell, most of the rnn configurations
do better than the best of the convolution-based configurations. rnn exhibits a very high
variance in the performance compared to convolution models for multifaceted abstraction
smell.

Equipped with experiment results, we attempt to validate the hypotheses. We present
auc, precision, recall, and F1 to show the performance of the analyzed deep learningmodels.
We attempt to validate each of the addressed hypotheses in the rest of the section.

105 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

CNN-1D CNN-2D RNN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

F1

(a) Complex method

CNN-1D CNN-2D RNN
0.00

0.05

0.10

0.15

0.20

0.25

F1

(b) Empty catch block

CNN-1D CNN-2D RNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1

(c) Magic number

CNN-1D CNN-2D RNN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

F1

(d) Multifaceted abstraction

Figure 5.10: Boxplots of the performance (F1) exhibit by the considered deep learningmodels
for all the four smells

5.2.1.1 D-RQ1.H1. It is feasible to detect smells using deep learning methods.

Table 5.7 lists performance metrics (auc, precision, recall, and F1) for the optimal config-
uration for each smell, comparing all three deep learning models. It also lists the hyper-
parameters associated with the optimal configuration for each smell. Figure 5.11 presents
the performance (F1) of the deep learning models corresponding to each smell considered
in this exploration.

For complex method smell, cnn-2d performs the best; though, performance of cnn-1d is
comparable. This could be an implication of the fact that the smell is exhibited through the
structure of a method; hence, cnn models, in this case, could identify the related structural
features for classifying the smells correctly. On the other hand, cnn models perform signif-
icantly poorer than rnn in identifying empty catch block smells. The smell is characterized
by a micro-structure where catch block of a try-catch statement is empty. rnn model iden-
tifies the sequence of tokens (i.e., opening and closing braces), following the tokens of a try
block, whereas cnn models fail to achieve that and thus rnn performs significantly better
than the cnn models. Also, the rnn model performs remarkably better than cnn models for
magic number smell. The smell is characterized by a specific range of tokens and the rnn
does well in spotting them. Multifaceted abstraction is a non-trivial smell that requires anal-
ysis of method interactions to observe incohesiveness of a class. None of the employed deep
learning models could capture the complex characteristics of the smell, implying that the

106 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

Table 5.7: Performance of all three models with configuration corresponding to the optimal
performance. L refers to deep learning layers, F refers to number of filters, K refers to kernel
size, MPW refers to maximum pooling window size, ED refers to embedding dimension,
LSTM refers to number of LSTM units, and E refers to number of epochs.

Performance Configuration
Smells AUC Precision Recall F1 l f k mpw ed lstm e
cm 0.82 0.26 0.69 0.38 2 16 7 4 – – 25
ecb 0.59 0.02 0.31 0.04 2 64 11 4 – – 40
mn 0.68 0.18 0.77 0.29 2 16 5 5 – – 17cnn-1d

ma 0.83 0.05 0.75 0.09 3 16 11 5 – – 36
cm 0.82 0.30 0.68 0.41 3 64 5 4 – – 17
ecb 0.50 0.01 1 0.02 3 64 7 2 – – 32
mn 0.65 0.31 0.41 0.35 1 16 11 2 – – 50cnn-2d

ma 0.87 0.03 0.95 0.06 2 8 7 2 – – 19
cm 0.85 0.19 0.80 0.31 3 – – 16 32 8
ecb 0.86 0.13 0.76 0.22 2 – – 16 128 15
mn 0.91 0.55 0.91 0.68 2 – – 16 128 19rnn

ma 0.69 0.01 0.86 0.02 1 – – 32 128 9

0.38 0.41
0.31

0.04 0.02

0.22
0.29

0.35

0.68

0.09 0.06 0.02
0

0.2

0.4

0.6

0.8

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CM ECB MN MA

F1

Figure 5.11: Comparative performance of the deep learning models for each considered
smell

token–level representation of the data may not be appropriate for capturing higher–level
features required for detecting the smell. It is evident from the above discussion that all the
employed models are capable of detecting smells in general; however, their smell-specific
performances differ significantly.

Therefore, the hypothesis exploring the feasibility of detecting smells using deep learn-
ing models holds true.

107 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

5.2.1.2 D-RQ1.H2. cnn-2d performs better than cnn-1d in the context of detecting
smells.

Table 5.7 shows that cnn-1d performs better than cnn-2d model for empty catch block and
multifaceted abstraction smells with optimal configuration. On the other hand, cnn-2d per-
forms slightly better than its one dimension counterpart for detecting complex method and
magic number smells. In summary, there is no universal superior model for detecting all
four smells; their performance varies depending on the smell under analysis.

Therefore, we reject the hypothesis that cnn-2d performs overall better than cnn-1d
as none of the models is clearly superior to another in all the cases.

5.2.1.3 D-RQ1.H3. rnn model performs better than cnn models in the smell detec-
tion context.

Table 5.8 presents the comparison of rnn with cnn-1d and cnn-2d by comparing pairwise
F1 measure differences in percentages, where the F1 values are obtained by the optimal
configuration in each case. Here, the performance difference in percentage is calculated
by (F1RNN −F1CNN)/F1RNN × 100. rnn performs far superior for empty catch block and
magic number smells against both convolution models. However, the performance of rnn
is lower for complex method and multifaceted abstraction smells.

Table 5.8: Performance (F1) comparison of RNN with CNN-1D and CNN-2D

Smell rnn vs cnn-1d rnn vs cnn-2d
cm -22.94% -33.81%
ecb 80.23% 91.94%
mn 57.19% 48.48%
ma -353.15% -208.00%

The analysis suggests that performance of the deep learning models is smell-specific.
Therefore, we reject the hypothesis that rnn models perform better than cnn models
for all considered smells.

This is the first attempt in the software engineering literature to show the feasibility of
detecting smells using deep learning models from the tokenized source code without
extensive feature engineering. It may motivate researchers and developers to explore
this direction and build over it. For instance, context plays an important role in de-
ciding whether a reported smell is actually a quality issue for the development team.
One of the future works that the community may explore is to combine the models

Implications

108 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

trained using samples classified by the existing smell detection tools with the devel-
oper’s feedback to identify more relevant smells considering the context.

Our results show that, though both convolution methods perform superior for spe-
cific smells, their performance is comparable for each smell. This imply that we may
use one-dimensional or two-dimensional cnn interchangeably without compromising
the performance significantly.

The comparative results on applying diverse deep learning models for detecting
different types of smells suggest that there exists no universal optimal model for de-
tecting all smells under consideration. The performance of the model is highly depen-
dent on the kind of smell that the model is trying to classify. This observation provides
grounds for further investigation, encouraging the software engineering community
to propose improvements on smell-specific deep learning models.

5.2.2 D-RQ2. Is transfer-learning feasible in the context of detect-
ing smells? If yes, which deep learning model exhibits supe-
rior performance in detecting smellswhen applied in transfer-
learning setting?

We explore the feasibility of applying transfer-learning in smell detection context. If it is fea-
sible, we are interested to learn which deep learning model exhibits superior performance.

Approach
In the case of direct-learning, the training and evaluation samples belong to the same pro-
gramming language whereas in the transfer-learning case, the training and evaluation sam-
ples come from two similar but different programming languages. This research question
inquires the feasibility of applying transfer-learning i.e., train neural networks by using C#
samples and employ the trained model to classify code fragments written in Java.

For the transfer learning experiment we keep the training samples exactly the same as
the ones we used in RQ1. For evaluation, we download repositories containing Java source
code and preprocess the samples as described in Section 4.2.1. Similar to RQ1, evaluation is
performed on a realistic scenario, i.e., we use all the positive and negative samples from the
selected repositories. This arrangement ensures that the models would perform as reported
if employed in a real-world application. Table 5.9 shows the number of samples used for
training and evaluation for this research question.

Results
As an overview, Figure 5.12 shows the scatter plots for each deep learning model comparing
the performance (F1) of both the direct-learning and transfer-learning for all the consid-
ered smells for all the configurations. These plots outline the performance exhibited by the
models in both the cases with trend lines distinguishing the compared series. The plots im-
ply that the models perform better in the transfer-learning case for all except multifaceted
abstraction design smell.

109 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

0 20 40 60 80 100 120 140 160
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

Direct-learning CNN-1D CM

Transfer-learning CNN-1D CM

(a) CNN-1D for complex
method smell

0 20 40 60 80 100 120 140 160
Configuration

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F1

Direct-learning CNN-1D ECB

Transfer-learning CNN-1D ECB

(b) CNN-1D for empty catch
block smell

0 20 40 60 80 100 120 140 160
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

Direct-learning CNN-1D MN

Transfer-learning CNN-1D MN

(c) CNN-1D for magic number
smell

0 20 40 60 80 100 120 140 160
Configuration

0.05

0.00

0.05

0.10

0.15

0.20

0.25

F1

Direct-learning CNN-1D MA

Transfer-learning CNN-1D MA

(d) CNN-1D for multifaceted
abstraction smell

0 20 40 60 80 100 120 140 160
Configuration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

Direct-learning CNN-2D CM

Transfer-learning CNN-2D CM

(e) CNN-2D for complex
method smell

0 20 40 60 80 100 120 140 160
Configuration

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F1

Direct-learning CNN-2D ECB

Transfer-learning CNN-2D ECB

(f) CNN-2D for empty catch
block smell

0 20 40 60 80 100 120 140 160
Configuration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

Direct-learning CNN-2D MN

Transfer-learning CNN-2D MN

(g) CNN-2D for magic number
smell

0 20 40 60 80 100 120 140
Configuration

0.05

0.00

0.05

0.10

0.15

0.20

F1

Direct-learning CNN-2D MA

Transfer-learning CNN-2D MA

(h) CNN-2D for multifaceted
abstraction smell

0 5 10 15 20
Configuration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1

Direct-learning RNN CM

Transfer-learning RNN CM

(i) RNN for complex method
smell

0 5 10 15 20
Configuration

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F1

Direct-learning RNN ECB

Transfer-learning RNN ECB

(j) RNN for empty catch block
smell

0 2 4 6 8 10 12 14 16 18
Configuration

0.2

0.0

0.2

0.4

0.6

0.8

1.0

F1

Direct-learning RNN MN

Transfer-learning RNN MN

(k) RNN for magic number
smell

0 5 10 15 20
Configuration

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F1

Direct-learning RNN MA

Transfer-learning RNN MA

(l) RNN for multifaceted ab-
straction smell

Figure 5.12: Scatter plots for each model and for each considered smell comparing F1 of
direct-learning and transfer-learning along with corresponding trendline

110 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

Table 5.9: Positive (P) and negative (N) number of samples used for training and evaluation
for RQ2

1-d 2-d
Training Evaluation Training Evaluation
p and n p n p and n p n

cm 3,472 2,163 48,633 2,641 2001 30,215
ecb 1,200 597 50,199 982 538 31,678
mn 5,000 42,037 50,905 5,000 7,778 24,438
ma 290 25 13,110 284 23 11,812

In the rest of the section, we report quantitative results on applying transfer learning
between C# to Java. The results are based on the optimal configuration of each model for
each smell.

5.2.2.1 D-RQ2.H1. It is feasible to apply transfer-learning in the context of code
smells detection.

Table 5.10 presents the performance of the models for all the considered smells demonstrat-
ing strong evidence on the feasibility of applying transfer-learning for smell detection. The
performance pattern is in alignment to that in the direct-learning case; Spearman corre-
lation between the performance produced by direct-learning and transfer-learning is 0.98
(with p-value = 1.309×10−8).

Therefore, we accept the hypothesis that transfer-learning is feasible in the context of
code smells detection.

0.51 0.57
0.42

0.08 0.06
0.16

0.42 0.48

0.92

0.02 0.00 0.00
0

0.2

0.4

0.6

0.8

1

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CN
N
-1
D

CN
N
-2
D

RN
N

CM ECB MN MA

F1

Figure 5.13: Comparative performance of the deep learning models for each considered
smell in transfer-learning settings

Figure 5.13 presents a comparison among the performance (i.e., F1) exhibited by all the
deep learning models for each considered smell. rnn performs significantly superior for

111 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

Table 5.10: Performance of all three models with configuration corresponding to the optimal
performance. L refers to deep learning layers, F refers to number of filters, K refers to kernel
size, MPW refers to maximum pooling window size, ED refers to embedding dimension,
LSTM refers to number of LSTM units, and E refers to number of epochs.

Performance Configuration
Smells AUC Precision Recall F1 l f k mpw ed lstm e
cm 0.87 0.38 0.79 0.51 2 32 7 4 – – 23
ecb 0.56 0.05 0.15 0.08 3 8 5 5 – – 27
mn 0.64 0.48 0.37 0.42 1 32 11 3 – – 12cnn-1d

ma 0.52 0.01 0.04 0.02 2 8 11 5 – – 13
cm 0.88 0.43 0.84 0.57 1 8 7 2 – – 37
ecb 0.54 0.04 0.12 0.06 3 16 5 4 – – 19
mn 0.65 0.43 0.54 0.48 1 64 5 4 – – 8cnn-2d

ma 0.50 0.0 0.0 0.0 3 8 5 5 – – 17
cm 0.66 0.62 0.32 0.42 1 – – 32 64 8
ecb 0.90 0.09 0.91 0.16 3 – – 32 32 27
mn 0.95 0.94 0.91 0.92 1 – – 32 32 22rnn

ma 0.51 0.0 0.08 0.0 1 – – 32 32 18

empty catch block andmagic number smells following a trend comparable to direct-training.
For complex method smell, cnn-2d performs the best followed by cnn-1d. All the three
models perform poorly with multifaceted abstraction smell.

5.2.2.2 D-RQ2.H2. Transfer-learning performs inferior compared to direct learn-
ing.

0.38

0.51

0.41

0.57

0.31

0.42

0.04
0.08

0.02
0.06

0.22
0.16

0.29

0.42
0.35

0.48

0.68

0.92

0.09

0.02
0.06

0.00 0.02 0.00
0.0

0.2

0.4

0.6

0.8

1.0

DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL DL TL

CNN-1D CNN-2D RNN CNN-1D CNN-2D RNN CNN-1D CNN-2D RNN CNN-1D CNN-2D RNN

CM ECB MN MA

F1

Figure 5.14: Comparison of performance of the deep learning models between direct-
learning (DL) and transfer-learning (TL) settings

Figure 5.14 compares the performance of the models at their optimal configurations ap-

112 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

plied in the transfer-learning and in direct-learning. We observe that, in majority of cases,
transfer-learning performs better than the corresponding direct-learning counterpart mod-
els. The only exception for implementation smells is rnn applied on empty catch block smell,
where direct-learning shows better results. For the only design smell, i.e., multifaceted ab-
straction, all the models perform poorly in both cases.

To dig deeper into the cause of better performance of deep learning models in the
transfer-learning case, we calculate the ratio of positive and negative evaluation samples in
both research questions. Table 5.11 presents the ratio for samples used in both the research
questions as well as percentage difference of the ratios of positive and negative samples
in RQ2 compared to the sample ratio in RQ1. The percentage difference is computed as
follows: (RatioRQ2 −RatioRQ1)/RatioRQ1 × 100. It is evident that Java code samples have
higher ratio of positive samples, up to 188% higher, compared to C# samples for imple-
mentation smells. We deduce that due to significantly higher number of positive samples,
the deep learning models show better performance statistics in the transfer-learning case.
On the other hand, multifaceted abstraction smell occurs significantly lower (up to 72%) in
Java code compared to C# code and this lower ratio further degrades the performance of the
models for multifaceted abstraction smell.

Therefore, due to size discrepancies in the samples available for evaluation in direct-
learning and transfer-learning, we cannot conclude the superiority or inferiority of the
results produced by applying transfer-learning compared to those of direct-learning.

Table 5.11: Difference in ratio (in percent) of positive and negative evaluation samples in
RQ2 compared to sample ratio in RQ1

Ratio (RQ1) Ratio (RQ2) Difference %
Smell 1d 2d 1d 2d 1d 2d
cm 0.0287 0.0250 0.0445 0.0662 35.53 62.19
ecb 0.0097 0.0092 0.0119 0.0170 18.14 45.88
mn 0.1242 0.1210 0.2084 0.3183 40.40 61.98
ma 0.0055 0.0070 0.0019 0.0019 -188.42 -260.87

Our results demonstrate that it is feasible to apply transfer-learning in the smell detec-
tion context. Exploiting this approach can lead to a new category of smell detection
tools, specifically for the programming languages where comprehensive smell detec-
tion tools are not available.

Implications

113 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

5.2.3 Discussion

As is the case with most research, our results are sobering rather than sensational. Although
it is possible to detect some code smells using deep learning models, the method is by no
means universal, and the outcome is sensitive to the training set composition and the train-
ing time. In the rest of the section, we elaborate on these observations emerging from the
presented results.

5.2.3.1 Is there any silver-bullet?

In practical settings one would want to employ a universal deep learning model that per-
forms well for a variety of smells. In addition, a universal model architecture that performs
consistently well for all the considered smells would allow the implementation of tools sim-
pler.

rnn has the reputation to perform well with textual data and sequential patterns while
cnn is considered good for imaging data and visual patterns. Given the similarity of source
code and natural language, it is expected to obtain good performance from rnn. Our results
show that rnn significantly outperforms both cnn models in the cases of empty catch block
and magic number . However, in the case of complex method , the cnn models outperform
the rnn whereas in the case of multifaceted abstraction, none of the models yield satisfac-
tory results. These outcomes suggest that there is not one deep learning model that can
be used for all kinds of smells. We have a uniform model architecture for each model and
we observed that the performance of the model differs significantly for different smells. It
suggests that it is non-trivial, if not impossible, to propose a universal model architecture
that works for all smells. Each smell exhibits diverse distinctive features and hence their
detection mechanisms differ significantly. Therefore, given the nature of the problem, it is
unlikely that one universal model architecture will be the silver-bullet for the detection of
a wide range of smells.

5.2.3.2 Performance comparison with baseline

It is not feasible to compare the results presented in this paper with other attempts [KVGS09,
KVGS11, MAB+12b, MAB+12a, BBEAM10, BKG19, FPRZ16] that use machine learning for
smell detection due to the following reasons. First, the replication packages of the related
attempts are not available. Second, for most of the existing attempts, the ratio of positive
and negative evaluation samples is not known; in the absence of this information, we cannot
compare them with our results fairly since the ratio plays an important role in the perfor-
mance of machine learning models. Furthermore, the existing approaches compute metrics
and feed them to machine learning models while we feed tokenized source code.

We compare our results with the results obtained from two baseline random classifiers
that do not really learn from the data but use only the distribution of smells in the training
set to form their predictions. Table 5.12 presents the comparison. The first random classifier
generates predictions by following the training set’s class distribution: that is, for every item
in the evaluation set it predicts whether it is a smell or not based on the frequency of smells

114 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

in the training data. We did that for both balanced and unbalanced evaluation samples to
mimic the learning process of the actual experiment. In the middle three columns, referred
to as ‘rc (frequency)’, of the table we show the results for the balanced setting, as they were
better than the results for the unbalanced setting. The second random classifier predicts
always that a smell is present; this gives perfect recall, but low precision, as you can see in
the columns corresponding to ‘rc (all smells)’ of the table. Overall, our models perform far
better than a random classifier for all but multifaceted abstraction smell for both baseline
variants.

Table 5.12: Comparison of performance (Precision, Recall, and F1) with a random classifier
(RC) following the training set frequencies or responding always indicating a smell

Performance
Our results RC (frequency) RC (all smells)

Smells P R F1 P R F1 P R F1
cm 0.38 0.79 0.51 0.03 0.50 0.05 0.03 1 0.05
ecb 0.05 0.15 0.08 0.01 0.50 0.02 0.01 1 0.02
mn 0.48 0.37 0.42 0.11 0.50 0.18 0.11 1 0.20cnn-1d

ma 0.01 0.04 0.02 0.01 0.50 0.01 0.01 1 0.01
cm 0.43 0.84 0.57 0.02 0.50 0.05 0.02 1 0.05
ecb 0.04 0.12 0.06 0.01 0.50 0.02 0.01 1 0.02
mn 0.43 0.54 0.48 0.11 0.50 0.18 0.11 1 0.19cnn-2d

ma 0.0 0.0 0.0 0.01 0.50 0.01 0.01 1 0.01
cm 0.62 0.32 0.42 0.03 0.50 0.05 0.03 1 0.05
ecb 0.09 0.91 0.16 0.01 0.50 0.02 0.01 1 0.02
mn 0.94 0.91 0.92 0.11 0.50 0.18 0.11 1 0.20rnn

ma 0.0 0.08 0.0 0.01 0.50 0.01 0.01 1 0.01

5.2.3.3 Poor performance in detecting a design smell

The presented neural networks perform very poor when it comes to detecting the sole
design smell multifaceted abstraction. We infer the following two reasons for this under-
performance. First, design smells such as multifaceted abstraction are inherently difficult to
spot unless a deeper semantic analysis is performed. Specifically, in the case of multifaceted
abstraction, interactions among methods of a class as well as the member fields are required
to observe cohesion among the methods which is a non-trivial aspect and the neural net-
works could not spot this aspect with the provided input. Therefore, we need to provide
refined semantics information in the form of engineered features along with the source
code to help neural networks identify the inherent patterns. Second, the number of posi-
tive training samples were very low, thus significantly restricting our training set. The low
number severely impacts the ability of neural networks to infer the responsible aspect that
cause the smell. This limitation can be addressed by increasing the number of repositories
under analysis.

115 / 168 5.2. RESULTS OF DETECTING SMELLS USING DEEP LEARNING

5.2.3.4 Trading performance with training-time

As observed in the results section, rnn performs significantly superior than cnn in some
specific cases. However, we also note that rnn models take considerable more time to train
compared to cnn models. We log the time taken by each experiment for the comparison.
Table 5.13 presents the average time taken by eachmodel for each smell per epoch. The table
shows that the rnn performance is coming from much more intense processing compared
to cnn. Therefore, if the performance of rnn and cnn is comparable for a given task, one
should go with cnn-based solution for significantly faster training time.

Table 5.13: Average training-time taken by the models to train a single epoch in seconds

cnn-1d cnn-2d rnn
cm 1.2 1.0 2,134
ecb 0.8 0.5 1,038
mn 3.2 3.9 5,737
ma 0.8 4.6 2,208

The study may encourage the research community to explore the deep learning meth-
ods as a viable option for addressing the problem of smell detection. Given that we did
not consider the context and developers’ opinion on smells reported by deterministic
tools, it would be acutely interesting to combine these aspects either by considering
the developers’ opinion (by manually tagging the samples) while segregating positive
and negative samples or by designing the models that take such opinions as an input
to the model.

We have shown that transfer-learning is feasible in the context of code smells. This
result introduces new directions for automating smell detection which is particularly
useful for programming languages for which smell detection tools are either not avail-
able or not matured.

Though this work shows the feasibility of detecting implementation smells; how-
ever, complex smells such as multifaceted abstraction require further exploration and
present many open research challenges. The research community may build on the
results presented in this study and further explore optimizations to the presentedmod-
els, alternative models, or innovative model architectures to address the detection of
complex design and architecture smells.

Beyond smell detection, proposing an appropriate refactoring to remove a smell is
a non-trivial challenge. There have been some attempts [TME+18, BSH+11] to sep-
arate refactoring changes from bug fixes and feature additions. One may exploit the
information produced from such tools and the power of deep learning methods to
construct tools that propose suitable refactoring mechanism.

Opportunities

116 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

5.3 Results ofMaintainabilityAnalysis onConfiguration
Code

This section presents the results gathered from the analysis of configuration code and our
observations w.r.t. each research question addressed.

We use the term “total detected smells (by volume)” to refer to all the smell instances
detected in a project. We use the term “total detected smells (by existence)” to refer to the
number of different types of smell instances detected in a project. Additionally, we refer to
each cataloged configuration smell as a three letter acronym as defined in the Section 3.2.3.

5.3.1 C-RQ1. What is the distribution of maintainability smells in
configuration code?

Approach
We compute the total number of detected smell instances (by volume and by existence) for
all the smells belonging to both implementation and design configuration smells categories.

Results
The left pane of Table 5.14 shows the number of smell instances detected for implementation
configuration smells (ics) both by volume (i(v)) and by existence (i(e)). The three most
frequently occurring smells by volume and by existence are iia (improper alignment), iq
(improper quote usage), and ils (long statement). Similarly, ide (duplicate entry), imd (missing
default case), inc (inconsistent naming convention) are some of the least frequently occurring
smells.

The right pane of Table 5.14 shows the similar distribution for detected design configu-
ration smells (dcs). The most frequently occurring design configuration smells are dim (in-
sufficient modularization) and dmf (multifaceted abstraction). Similarly, the least frequently
occurring smells are dbh (broken hierarchy) and dde (deficient encapsulation).

A few observations from the above table are the following.

• There is a relatively large number of smell instances reported for ddb (duplicate block)
by volume; however, the smell only occurs in less than one forth of the analyzed
repositories. This indicates that either the developers of Puppet repositories
do not duplicate the code at all or they do it massively.

• Although, investigating and establishing the potential reasons of identified smell in-
stances is not in the scope of this study, the nascent maturity phase of current config-
uration systems could be a cause for a few smells. Specifically, the support for system
configuration code in terms of better tools and IDEs is still maturing which could
potentially help avoiding smells such as iia (improper alignment).

The reported frequently occurring smells may also motivate efforts in the future to
identify their causes and steps to avoid them. Such efforts may focus on improving
existing documentation, enhancing language support, and developing new tools.

117 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

Table 5.14: Distribution of Detected Implementation and Design Configuration Smells

Impl. config. smells #I(V) #I(E) Design config.
smells

#I(V) #I(E)

Missing default case 4,604 706 Multifaceted
abstraction

64,266 4,339

Inconsistent naming
convention

4,804 440 Unnecessary
abstraction

4,319 1,427

Complex expression 3,994 963 Imperative abstraction 4,354 1,575
Duplicate entity 65 29 Missing abstraction 1,913 813
Misplaced attribute 22,976 1,383 Insufficient

modularization
96,033 4,422

Improper alignment 780,265 3,064 Unstructured module 4,653 3,337
Invalid property value 14,360 729 Duplicate block 17,601 1,016
Incomplete tasks 11,071 1,467 Broken hierarchy 83 37
Deprecated statement
usage

6,466 674 Dense structure 1760 1760

Improper quote usage 428,951 2,463 Deficient
encapsulation

1,075 424

Long statement 527,637 4,115 Weakened modularity 13,944 2,890
Incomplete
conditional

4,797 1,217

Unguarded variable 71339 1,405

• It is interesting to note that dds (dense structure) falls in the least occurring smell
category by volume but most frequently occurring smell category by existence. It is
due to the fact that there could be only one instance at the most for this smell in a
project.

dum (unstructured module) also exhibits similar characteristics. Since the tool ana-
lyzes the structure of a module as a whole, dum gets identified at the most once for
a module. Since each project deals with only a limited number of modules, the de-
tected smell instances are relatively lowwhereas the smell occurred in relatively large
number of analyzed projects.

5.3.2 C-RQ2. What is the relationship between the occurrence of de-
sign configuration smells and implementation configuration
smells?

Approach
We count the total number of implementation and design configuration smells for each Pup-
pet repository both by volume and by existence. Next, we compute Spearman correlation
coefficient between the counted implementation and design configuration smells for each
repository by volume and by existence.

118 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

Results
Figure 5.15a presents a scatter graph (with alpha set to 0.3) showing the co-occurrence be-
tween implementation and design configuration smells by volume. The figure shows a dense
accumulation towards the left-bottom indicating that implementation and design configu-
ration smells co-occur for relatively small number of identified smell instances.

Figure 5.15b shows a density graph showing the co-occurrence between implementation
and design configuration smells by existence. The figure reveals a dense correlation between
implementation and design configuration smells (by existence) in the left bottom quadrant
of the figure where the number of identified smell types is half or less.

(a) (b)

Figure 5.15: Co-occurrence between implementation and design configuration smells by (a)
volume and by (b) existence

We compute Spearman correlation coefficient for both the cases. Table 5.15 shows the
correlation coefficients and associated p-values. Both the analyses show positive correlation
between implementation and design configuration smells with high statistical significance;
however, correlation analysis by volume exhibits stronger correlation than correlation anal-
ysis by existence.

It shows that high volume of design (or implementation) configuration smells is a
strong indication of the presence of high volume of implementation (or design) config-
uration smells in a project. Whereas, a project that shows presence of large number of
design (or implementation) configuration smell types moderately indicates presence
of large number of implementation (or design) configuration smell types.

5.3.3 C-RQ3. Is the principle of coexistence applicable to smells in
configuration projects?

Approach
To compute intra-category co-occurrence for a smell, we count the number of occurrences

119 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

Table 5.15: Results of Correlation Analysis

Correlation(ρ) p-value
Analysis by volume 0.66410 <2.2e−16
Analysis by existence 0.44526 <2.2e−16

of other smells in the same category (by existence), only when the smell occurred. We
evaluate the average co-occurrence for each smell across all the repositories considering
only those values where the smell has occurred. We compute the average co-occurrence
for all the implementation and design configuration smells and compared their normalized
values.

Results
Figure 5.16 presents the average co-occurrence computed for each smell for both the im-
plementation and design configuration smells. ide (duplicate entity) with average 0.75 and
iq (improper quote usage) with average 0.29 are the implementation configuration smells
that show the highest and lowest co-occurrences respectively in the category. In the design
configuration smells category, dbh (broken hierarchy) with average 0.73 and dim (insuffi-
cient modularization) as well as dmf (multifaceted abstraction) with average 0.36 show the
highest and lowest co-occurrences respectively.

Figure 5.16: Average co-occurrence (intra-category) for implementation and design config-
uration smells

120 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

The result implies that whenever duplicate entity or broken hierarchy smells are found,
it is very likely to find other smells from the same category in the project. Whereas, the
smells improper quote usage and insufficient modularization occur more independently.

Average normalized correlation for implementation and design configuration smells is
0.43 and 0.47 respectively. This leads to another interesting observation: design configu-
ration smells show 9.3% higher co-occurrence among themselves than the imple-
mentation configuration smells. Since a design decision impacts the software in many
ways, it is believed that one wrong or non-optimal design decision introduces many quality
issues. The statistics reported above affirm the belief.

5.3.4 C-RQ4. Does smell density depend on the size of the configu-
ration project?

Approach
We compute normalized smell density for both the smell categories for all the repositories
and plot scatter graphs between lines of code in the repository and the smell density. We
then perform correlation analysis on both sets and document our observations based on the
received results.

Results
Figure 5.17 presents the distribution of normalized smell density for implementation and
design configuration smells against lines of code (with alpha = 0.3).

(a) (b)

Figure 5.17: Smell density for (a) implementation configuration smells and (b) design con-
figuration smells against lines of code

The visual inspection of the above graphs reveals the following observations.

• The distribution shown in Figure 5.17a is very scattered and random in comparison
with the distribution in the Figure 5.17b. Although, both the figures show a weak

121 / 168 5.3. RESULTS OF MAINTAINABILITY ANALYSIS ON CONFIGURATION CODE

linear relationship between smell density and lines of code, Figure 5.17a shows a rel-
atively stronger linear relationship than the Figure 5.17b.

• Large projects show maturity and tend to demonstrate lower smell density compared
to smaller projects in both the cases.

We, then, compute Spearman correlation coefficient for both the data sets. The results
of the correlation analysis are summarized in Table 5.16.

Table 5.16: Results of Correlation Analysis

Correlation(ρ) p-value
Implementation smells 0.03833 0.00980
Design smells -0.32851 <2.2e−16

The results show no correlation between implementation smell density and size of
the project. However, a weak negative correlation is perceived with high statistical
significance between design smell density and the size of the project. This shows that
as the project size increases, design configuration smell density tends to decrease. This
result is interesting since it is believed traditionally that the complexity (and therefore,
smell density) of a piece of software increases as the size of the software grows.

5.3.5 Discussion

Our empirical study reveals a large number of class declarations where the correspond-
ing definitions are not found in the same repository. We find that 59% of the repositories
that we analyze have at least one such instance. The majority of such missing definitions
relate to third-party modules. A possible explanation is that software development teams
exclude third-party modules from their Puppet code under version control. This practice
provides the advantage of not having to maintain the used third-party modules as they
change. However, it breaks the fundamental principle of IaC, i.e. production and configura-
tion code should co-evolve. Such instances hurt the configuration process automation and
are bound to lead to trouble in the form of missing dependencies. More interestingly, the
Puppet language does not offer any solution to this problem since module installation, as
opposed to package installation, cannot be part of a configuration code specification.

Yet another observation concerns language design (in this context Puppet). Diligent
use of language features and adherence to best practices can drastically reduce smells dis-
cussed in this work. However, careful language design can also significantly avoid many
configuration smells. For example, dua (unnecessary abstraction), dbh (broken hierarchy),
and dde (deficient encapsulation) can be controlled and avoided by suitable changes in the

122 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

Puppet language. Similarly, many implementation configuration smells such as iuv (un-
guarded variable), ima (misplaced attribute), and ide (duplicate entity) can also be checked
at Puppet language level itself and can be avoided without any compromise in functionality
and convenience.

5.4 Results ofMaintainabilityAnalysis onDatabaseCode

In this section, we first present the results of a survey that we carried out to understand
developers’ perspective. We then present the results specific to each addressed research
question. We also provide a discussion covering qualitative analysis and opportunities we
perceive from this work.

5.4.1 Developers’ Survey on Database Smells

We carried out an online survey targeting software developers to understand their perspec-
tive about the significance of various database schema smells. We divided the survey in
three sections. In the first section, we collected information about participants’ experience.
In the second section, we asked the participants to read the description of each potential
smell presented (total 13 questions based on the catalog presented in Section 3.2.4) and to
rate each of them based on their importance (i.e., the degree of smell’s association with soft-
ware quality issues), and usefulness (i.e., the degree of accuracy of the smell in predicting
software quality issues). All the questions in this section were Likert scale questions. We
asked the respondents whether they consider the presented practice as a database schema
smell, a recommended practice, both a smell and a recommended practice depending on the
context, or neither a smell nor a recommended practice. The third section presented a cou-
ple of open-ended questions to get participants’ view on the presented catalog and missing
database schema smells. The questionnaire that we used is available online [Sha18a].

We ran a pilot for the survey, collected the feedback, and improved the survey. We
shared the survey to all online social media channels and sought participation from the
developer community. We received 52 complete responses out of 136 total responses.

0
3
6
9
12
15
18
21
24
27

0 1 2 3 4 5-10 11-20 /
>10

>20 / -

Software	development	experience	in	years
#Database	applications	developed

Figure 5.18: Experience of respondents in terms of number of years as well as the number
of database applications developed by them

123 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

0
5
10
15
20
25
30
35
40
45
50

CA AL SK MC MD PA MA CT VA IA GT MN OA

Re
sp
on

de
nt
s

Smells
Don’t	know
Recommended	practice
Neither	a	smell	nor	a	recommended	practice
Database	schema	smell
Both	a	smell	and	a	recommended	practice	depending	on	the	context

Figure 5.19: Respondents’ perspective of considered database smells

Most of the respondents belong to experienced developer groups. Figure 5.18 shows the
distribution of respondents’ experience in terms of number of years and number of database
applications they have developed. We summarize our findings from the survey below.

• A large majority of 88% agrees (42% strongly agree and 46% agree) that the aware-
ness and knowledge of database smells is crucial for software developers to develop
high quality applications. None of the respondents marked disagree or strongly dis-
agree options.

• Figure 5.19 shows a consolidated perspective provided by the respondents for section
2 questions. Based on the responses we infer that some practices, such asmeaningless
name (83%) and missing constraints (77%), are clearly marked as database smells.
However, we found that practices such as values in attribute definition and adjacency
list are more context-sensitive.

• The respondents had the option to add their views either in terms of smells that we
have not included but they have seen in practice as well as their feeling, objection,
or reservation on the presented smells. A few respondents underline the subjec-
tivity involved in database smell detection. For instance, one respondent said that
“…database smells in general depend much more on an assessment of the need and end
use of data…”. Similarly, another respondent shared an instance of duplicating values
in a table (which is a smell) to avoid querying 60 tables to load a single record. Yet
another respondent provided his/her opinion on index abuse smell: “…the proper use
of indexes is dependent on many things and without regular profiling it’s not possible to
decide whether indexes are actually being misused.”

124 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

As a conclusion of our survey, developers seem to acknowledge the need for detecting
database smells. However, their systematic identification remains an open problem.
This points to the need for a tool that automatically detects the database smells. De-
velopers may then, considering the context of the smell, decide whether the detected
smells are indeed quality issues or serving a required purpose.

Summary of the survey

5.4.2 DB-RQ1. What are the occurrence patterns of database smells?

Approach
We use DbDeo to detect 9 types of database schema smells in the 357 industrial and 2568
open-source repositories. We collate all the detected instances of smells by their type and
we compute average smell density for each type of smell.

Results
Table 5.17 summarizes the detected instances of database schema smells and corresponding
average occurrences per repository in all the analyzed repositories.

Table 5.17: Occurrences of database schema smells for industry (I) as well as open-source
(OSS) repositories

Smells Occurrences Avg. smell density
I OSS I OSS

Compound attribute 5,517 7,966 0.04 0.04
Adjacency list 733 297 0.15 0.02
God table 4,428 5,507 0.44 0.24
Values in attribute definition 85 326 0.00 0.02
Metadata as data 944 1,003 0.16 0.09
Multi-column attribute 1,624 3,137 0.10 0.07
Clone table 101 3,704 0.00 0.05
Overloaded attribute names 1814 7,300 0.20 0.21
Index abuse 12,643 9,475 1.25 1.76

We make the following observations from the collected data in the context of this ques-
tion. We find that index abuse is the most frequently occurring smell in both industrial as
well as open-source projects. However, it is interesting to note that although the number
of instances of index abuse smell are higher in industrial projects, they occur relatively less
frequently than open-source projects considering their density. On the other hand, values
in attribute definition in industrial projects and adjacency list in open-source projects are the
least frequently occurring smells.

In industrial projects, some smells show significantly higher proneness to occur com-
pared to open-source projects. For instance, smell density of adjacency list smell is approx-
imately seven times higher in industrial projects than the open-source projects. A potential

125 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

reason of the observation is the higher size and complexity of the industrial projects. On the
other hand, clone table tends to occur in open-source projects considerably more frequently
than in industrial projects.

From the developers’ survey, we learned that smells ca (compound attribute) and ia
(index abuse) are the least subjective smells (i.e., context matters the least for such smells)
whereas smells al (adjacency list) and va (values in attribute definition) are most subjective
in nature. This observation implies that a developer might be hesitant to introduce ca or ia
and more open to adopt a solution that involves smells such as al or va. Interestingly, the
occurrence patterns show exactly the opposite trend with respect to these smells; i.e., smells
ca and ia occur the most and smells al and va occur the least frequently in both industrial
and open-source systems.

5.4.3 DB-RQ2. Does the size of the project or the database play a
role in smell density?

Approach
We computed smell density for all the detected database smells. In this work, we define
smell density as the number of database smells detected per 10 sql statements. We then
compute the Spearman correlation coefficient between total loc (Lines Of Code) and smell
density of the repository. We also compute the Spearman coefficient between size of the
database (i.e., number of create table statements) and smell density of the repository.

Results
The Spearman correlation coefficient (ρ) for the dataset is 0.2420 (p-value = 3.724×10−06)
for industrial projects and 0.0006 (p-value = 0.9731) for open-source projects. This indi-
cates that density of database smells has low correlation for the industrial projects and no
correlation for the open-source projects with the total lines of code in the repository.

We also explore the relationship between smell density and size of the database where
size of a database is measured by the number of create table statements in the reposi-
tory. The Spearman correlation analysis provides us ρ = 0.7338 (p-value < 2.2× 10−16)
for industrial projects and ρ = 0.6174 (p-value < 2.2× 10−16) for open-source projects.

The values of the correlation coefficient show that smell density and size of the database
share a fairly strong correlation i.e., as the size of database increases, density of database
smells tends to increase.

126 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

5.4.4 DB-RQ3. Does the nature of code (type of the application, or
usage of orm frameworks) affect the smell density?

Approach
We extract information concerning the nature of subject systems; specifically, we infer the
type of application and used orm (Object-Relational Mapping) framework in each reposi-
tory.

We infer the type of application among the following set — Desktop, Mobile (either ios
or Android), or Web. We use the following heuristics to classify a repository to one of the
application types.

• We figure out the programming language used primarily in a repository. To know
the programming language used primarily in a repository, we scan all the files in
the repository, detect the files containing source-code using their file extensions, and
count the number of files for each programming language that we detect. We look
for the following programming languages: asp, c, c#, c++, html, Java, JavaScript,
Objective c, php, Perl, Python, Ruby, sql, vb, and xml.

• If the prime programming language is Java and there exists a manifest file with name
‘AndroidManifest.xml’, we conclude that the application is of type Mobile(Android).

• If the prime programming language is Objective c, we tag the application as a Mo-
bile(ios) application.

• If the repository contains one of the folders ‘Static’, ‘css’, or ‘public_html’ and pri-
marily used programming language is one of the php, asp, xml, or Python, then we
classify the application type as Web.

• If the prime language is html, then also we interpret the application type as Web.

• If none of the above conditions are met for a repository, we classify it as a Desktop
application.

Once we identify the type of all the repositories, we measure the average smell density
for each application type. We select a list of 19 well-known orm frameworks targeting dif-
ferent programming languages — C++ (LiteSQL, ODB, QxOrm), Java (ActiveJDBC, Apache
Cayenne, Eclipse Link, Enterprise JavaBeans, Hibernate, Mybatis), Objective C (Core Data),
C# (Dapper, Entity Framework, linq to sql, NHibernate), php (Doctrine, Propel), and Python
(SQLAlchemy, Django, SqlObject). We scan the dependencies of a repository specified in
import (or similar) statements to detect whether the repository uses an orm framework.
For instance, we look at import statements in Java applications for the presence of import
org.apache.Cayenne to infer that the application is using Apache Cayenne framework. We
measure and compare the average smell density for both orm-based and non-orm-based
repositories.

127 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

Results
Figure 5.20 (left) shows average smell density for different types of applications. The fig-
ure shows that 1998 open-source and 346 industrial repositories are classified as Desktop,
40 open-source and 2 industrial repositories as Mobile, and 530 open-source and 9 indus-
trial repositories as Web applications. For open-source repositories, all three application
types exhibit similar database schema smell density. This indicates that application type
is not a significant factor that affects database smell density for open-source repositories.
On the other hand, industrial Web applications show significantly lower smell density than
the industrial Desktop applications although the sample for mobile and web applications in
industrial projects is not significant from a statistical perspective.

Figure 5.20: Average smell density of different types of applications (left) and projects using
ORM frameworks and rest of the projects (right)

Right side of figure 5.20 shows average smell density for repositories separated based
on whether they use an orm framework or not. We observed that 681 open-source and
238 industrial projects use orm frameworks among the analyzed projects. For industrial
projects, non-orm-based projects show lower average smell density than the projects based
on orm frameworks whereas we observe an opposite trend for open-source projects. How-
ever, Mann-Whitney U test shows that the difference in the average smell density is not sta-
tistically significant (p-value = 0.0252 for industrial and p-value = 0.1612 for open-source
projects).

Thus, orm frameworks do not bring immunity from database schema smells.

5.4.5 DB-RQ4. What is the degree of co-occurrence among database
smells?

Approach
For each detected smell, we count occurrences of rest of the smells in the repository to
investigate the degree of co-occurrence among database smells. We compute average co-
occurrence for each smell across all the repositories. We take the average of the co-occurrences

128 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

taking into consideration only those values where the smell has occurred at least once. Fur-
ther, we normalize the average co-occurrence values with number of detected smells. This
exercise reveals the normalized co-occurrence patterns among database smells.

Results
Figure 5.21 shows average co-occurrence among database smells. The figure reveals that
clone table for industrial projects and values in attribute definition for open-source projects
showhighest co-occurrencewith other smells. Index abuse smell exhibits lowest co-occurrence
with other smells for both the categories of projects. It implies that whenever a clone table in
an industrial project or values in attribute definition smell in an open-source project occurs,
it is very likely to find other database smells in the project. On the other hand, index abuse
smell occurs more independently.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CA AL GT VA MD MA CT OA IA

Av
er
ag
e	c

o-
oc
cu
rr
en

ce

Open-source Industry

Figure 5.21: Average co-occurrence among database smells

Another interesting observation from figure 5.21 is that smells show considerably higher
correlations in industrial projects. A potential reason of the fact could be the larger size of
industrial projects than the open-source projects (industrial projects are five times larger on
average in terms of loc compared to open-source projects).

5.4.6 Discussion

In this section, we first discuss our observations about accuracy of the developed toolDbDeo.
We also present our qualitative analysis of the results presented in Section 5.1.

5.4.6.1 Qualitative Analysis of the Results

In this section, we discuss the results obtained from our analysis presented in Section 5.1
from a qualitative perspective.

Our analysis found a considerable number of overloaded attribute names smells. Inter-
estingly, many times developers declare attributes, even the primary keys, with identical
names but with different types in a repository. We found that id is the most popularly used
name for a primary key. More than 40% of the analyzed tables belonging to open-source
projects use id as a primary key. For industrial projects, it is considerably lower (11%). An

129 / 168 5.4. RESULTS OF MAINTAINABILITY ANALYSIS ON DATABASE CODE

interesting observation is that their type differs significantly. We found 13 and 12 differ-
ent types being used for the attribute id across all the analyzed open-source and industrial
repositories respectively.

During manual exploration, we also observed one of the reasons for smells clone table
and overloaded attribute names to occur. We observed that these smells occur often in test or
example code. This observation highlights the quality deficit introduced in test or example
code and possibly reveals the casual mindset of developers while writing test or example
code.

Parameterized queries (where values or even sometimes attribute names are supplied
dynamically) are very common for embedded sql statements in source code. We observed
create table statements are majorly defined statically; however, understandably, the ma-
jority of select statements are defined as parameterized queries. This observation has an
impact on index abuse smell. Our analysis reveals that more than 77% detected instances
of index abuse smell belong to the third variant of the smell (i.e., unused indexes). When
parameterized queries expect attribute names dynamically, our tool cannot identify the used
attribute names and produce false-positive instances of index abuse smell.

In the context of this study, we outline possible ways to improve the state of scientific
and industrial practice.

Tool support: ides can provide support, native or extended (via plug-ins), for
sql statements. This may allow developers to spot common problems, such as index
abuse and multicolumn attribute, early on and rectify them. Along the same lines, orm
frameworks may raise an alarm, for instance in the form of warnings, to attract devel-
opers’ attention towards potential flaws in the database design. Sophisticated external
tools may extend their support to detect database smells and improve the quality of
database schemas. Further, language extensions may support the native treatment to
embedded sql statements. The native treatment allows a developer to employ existing
tools (the ones used for the host programming language) for embedded sql code.

Training and awareness: The role of focused training sessions to increase aware-
ness of database quality among developers cannot be denied. Such sessions would en-
able them to learn from existing peer knowledge and keep themselves updated with
the changing technology.

Database standards: Standards are a collection of common practices followed
globally or within an organization to ensure the consistency and effectiveness of the
database environment. A database element naming convention is an example of such a
standard. Organizationsmay adopt stringent standards for designing database schemas
to ensure the quality of the database system. Across the industry, a move toward
stricter and comprehensive standards would prohibit some of the smells we identified.

DatabaseAPIs: Database apis can also be improved to support high quality schema
design. Apart from deprecating obsolete features and issuing a warning for common

Opportunities

130 / 168 5.5. THREATS TO VALIDITY

mistakes, apis may offer a newmechanism to verify the schema design. For example, a
new check statement (or an optional clause) may allow interested developers to check
their schema design upfront and refactor the detected smells before they make their
way to the production code.

5.5 Threats to Validity
This section presents threats to validity for all the experiments presented in this thesis.

5.5.1 Construct Validity

Construct validity measures the degree to which our tools and metrics actually measure the
properties they are suppose to measure. It concerns the appropriateness of observations
and inferences made on the basis of measurements taken during the study.

Static code analysis is typically prone to false-positives and false-negatives. To mitigate
this concern, we employed a comprehensive set of tests for the tools presented in this thesis
(viz. Designite, Puppeteer, and DbDeo) to rule out obvious deficiencies. Also, the effect of
false positives and negatives is reduced when two or more streams of results are compared
as in this experiment. Additionally, we found the results of manual validation of the detected
instances by the tools very satisfactory.

The tools that we used in this thesis use various metric thresholds to detect smells. Al-
though, some authors such as Rosenberg et al. [RSG99] have suggested the chosen threshold
values after careful analysis. However, it is a known and accepted fact that there is no one
globally accepted threshold set for various metrics [KKS+14, FBA11]. We chose the thresh-
olds that are commonly used by the software engineering community. Moreover, in the
specific case of Designite, the tool allows to change the thresholds if one would like to re-
peat the experiment with custom metric thresholds.

Further, a source-code analysis may adopt one of the numerous techniques to collect
source-code information such as ast parsing, reflection, and string matching [Spi15]. For
our tool Puppeteer, due to the lack of available parser library for Puppet, our tool uses
regular expression based stringmatching extensivelywhich is not as efficient as ast parsing.
In addition to test the tool with unit-tests that check the correctness of the used regular
expressions, we carried out manual testing to ensure the behaviour of the used expressions.
Similarly, due to the lack of an available tool to extract cleansed sql statements from a
host source code, we implemented the extraction functionality in our tool (DbDeo) using
regular expressions. Although, the regular expression-based solution cannot be as efficient
as ast parsing (for example, separating sql statements that are appearing in comments is
inherently difficult with regular expressions). We employed two-step extraction process to
overcome the deficiency. Additionally, we checked the results using both automated and
manual tests.

In the context of using deep learning techniques for smell detection, we use Designite
and DesigniteJava to detect smells in C# and Java code respectively and used the detected

131 / 168 5.5. THREATS TO VALIDITY

smells by them as ground truth. Relying on the outcome of two different tools may pose a
threat to validity especially in the case of transfer-learning. To mitigate the risk, we make
sure that both the tools use exactly the same set of metrics and heuristics to detect smells.
Also, we ensure the smell detection similarity by employing automated as well as man-
ual testing. Similarly, to address potential threats posed by representational discrepancies
between the two languages we ensure that Tokenizer generates same tokens for same or
similar language constructs. For instance, all the common reserved words are mapped to
the same integer token for both the programming languages.

5.5.2 Internal Validity

Internal validity refers to the validity of the research findings. It is primarily concerned with
controlling the extraneous variables and outside influences that may impact the outcome.

In the context of refactoring simulation that we carried out in one of our experiments,
there are many refactoring techniques to refactor the identified design smells. It is not
feasible to predict precise impact of design smell refactorings on architecture smells. The
observations of the refactoring simulations can vary in practice depending on the actual
chosen refactoring. We follow a simple rationale to simulate the influence of design smell
refactoring.

The higher the abstraction, the more important becomes the context of the system. Con-
text and domain knowledge play an important role while detecting and refactoring, espe-
cially, design and architecture smells. Given the sheer scale, it was not possible to carry out
a qualitative analysis for all the repositories. Considering the large number of repositories
mined in the exploration, we believe that the results are still relevant and generalizable.

In the context of our investigation exploring the feasibility of applying transfer-learning
for smell detection, we assume that both the programming languages are similar by paradigm,
structure, and language constructs. It would be interesting to observe how two completely
different programming languages (for example, Java and Python) can be combined in a
transfer-learning experiment.

5.5.3 External Validity

External validity concerns generalizability and repeatability of the produced results. In our
production code analysis study, we analyze only open-source C# repositories as subject
systems. Given the fact that most of the current literature focuses only on subject systems
written in Java programming language, our study complements the existing literature. Fur-
thermore, we have considered a large set of 3,209 C# repositories of varied size and contexts,
making this the largest mining study by scale so far for software smells.

To encourage the replication and building over the deep learning work, we have made
all the tools, scripts, and data available online.1

1https://github.com/tushartushar/DeepLearningSmells

https://github.com/tushartushar/DeepLearningSmells

132 / 168 5.5. THREATS TO VALIDITY

Similarly, our configuration code analysis experiment analyzes only Puppet repositories
whereas there are many other configuration management systems. Although the employed
tools are specific to one configuration language, the proposed theoretical model is general
and language agnostic. We believe that it will open doors for similar studies for other con-
figuration management systems.

For our database schema quality analysis, we cover syntaxes used for major database
providers and new syntaxes can be adopted by modifying the currently used regular ex-
pressions. Also, the experiment is reproducible; we have made the tool open-source under
a liberal license. Further, the raw data generated by the presented analysis has been made
available online.

Finally, the extraction of the full schema of a database is not guaranteed using our em-
ployed method in our database quality assessment study. The implication of such a limita-
tion is that our smell detectionmethodwill not report smells that may exist in the uncovered
sql statements.

Chapter 6

Conclusions and Future Work

Each conclusion marks a beginning.

This thesis presents maintainability analysis on production source code and extends the
scope of analysis to sub-domains of software systems. In this chapter, we summarize the
results of our research, present the contributions of the thesis, elaborate our vision for future
work, and conclude the thesis.

6.1 Summary of the Results

In the pursuit to perform a comprehensive maintainability analysis of production code writ-
ten in C#, we perform a large-scale empirical study. We mine seven architecture, 19 design,
11 implementation smells from a large set of 3 209 open-source repositories containing more
than 83 million lines of code. Stringing finer-grain code smells with the coarse-grain smells
could make the task of maintaining high quality of a software product easier. Apart from
exploring basic characteristics of smells (such as frequency of smells) arising at different
granularities, we carry out correlation and collocation analysis also to identify the degree
of relationships among smells at different granularities.

We find that cyclic dependency, unutilized abstraction, and magic number are the most
frequently occurring architecture, design, and implementation smells respectively. Thismay
prompt developers to pay additional attention to avoid frequently occurring smells. Our
analysis observes that smell density and lines of code in a C# project do not show a strong
correlation.

The co-occurrence analysis shows that the architecture smells exhibit a strong positive
correlation (ρ = 0.72) with design smells. This implies that a project containing a high
number of design smells would also exhibit a higher number of architecture smells and
vice-versa. We perform fine-grain correlation also between individual smell pairs. The fine-

133

134 / 168 6.1. SUMMARY OF THE RESULTS

grain correlation analysis suggests that both the kinds of smells are not correlated and do
not follow a monotonic relationship.

The collocation analysis reveals that unutilized abstraction and feature concentration
are highly collocated. Similarly, cyclically-dependent modularization show relatively high
collocation with cyclic dependency, scattered functionality, and dense structure architecture
smells. Apart from the above-mentioned smell pairs, individual pairs of architecture and
design smells do not collocate with each other. We also explore the potential influence of
design smells refactoring on architecture smells. Our analysis reveals that upto one third of
architecture smells (in case of god component) may get removed if we refactor all detected
design smells. However, a significant number of architecture smells persist even after all
the smells at design granularity were refactored. This observation emphasizes the need to
carry out smell detection and refactoring for each granularity.

In our exploration with deep learning techniques to identify smells, we establish that
deep learning methods can be used for smell detection. Specifically, we found that cnn and
rnn deep learningmodels can be used for smell detection thoughwith varying performance.
We did not find a clearly superior method between 1d and 2d convolution neural networks;
cnn-1d performed slightly better for the smells empty catch block and multifaceted abstrac-
tion, while cnn-2d performed superior than its one dimensional counterpart for complex
method and magic number . Further, our results indicate that rnn performs far better than
convolutional networks for smells empty catch block and magic number . Our experiment
on applying transfer-learning proves the feasibility of practicing transfer-learning in the
context of smell detection, especially for the implementation smells.

We extended the maintainability analysis to configuration code. We propose a catalog
of 13 implementation and 11 design configuration smells based on commonly known best
practices. We analyzed 4,621 Puppet repositories containing 142,662 Puppet files and more
than 8.9 million lines of code using Puppeteer — a configuration smell detection tool that
we developed. We investigated four research questions using smell instances detected by
our analysis.

Our analysis found that the developers of Puppet repositories either do not introduce
code-clones at all or they do it in a massive scale. Configuration smells belonging to a
smell category tend to co-occur with configuration smells belonging to another smell cat-
egory when correlation is computed by volume of identified smells. Design configuration
smells show 9% higher average co-occurrence among themselves than the implementation
configuration smells. This observation affirms the belief that one wrong or non-optimal de-
sign decision introduces many quality issues and therefore suggests the developers to take
design decisions critically and diligently. Design configuration smell density shows nega-
tive correlation whereas implementation configuration smell density exhibits no correlation
with size of a project. It shows that design configuration smells decrease as the size of the
configuration code increases.

Further, we carried out a comparative study of relational database schema smells and
its relationship with application and database characteristics. We present a catalog of 13
database schema smells based on commonly known best practices to design databases. We

135 / 168 6.2. CONTRIBUTIONS OF THE THESIS

carried out a survey to understand developers perspective on database schema smells. We
downloaded 16,052 open-source and acquired 840 industrial repositories, selected total 2925
repositories containing sql statements, analyzed more than 629 million lines of code, ex-
tracted more than 393 thousand sql statements, and detected more than 66 thousand in-
stances of database schema smells. We investigated four research questions and provided
empirical observations based on the data obtained.

We observed that the smell index abuse occurs most frequently in database code. We also
found that some smells such as adjacency list show significantly higher proneness to occur
in industrial projects compared to open-source projects. Our analysis shows that the size of
the host application has no impact on the density of database smells; however, smell density
shows positive correlation with the size of the database whereas application type (Desktop,
Mobile, or Web) has no significant impact on database smell density, Another observation
is that the use of an orm framework does not avoid database schema smells. Finally, the
smell clone table in industrial projects and smell values in attribute definition in open-source
projects exhibit the highest co-occurrence with other database smells.

6.2 Contributions of the Thesis

In this section, we summarize the contributions offered by the thesis in two dimensions —
research and practice. From the research perspective, we identify the following contributions
from the thesis.

• A method to carry out large-scale empirical study (both in terms of number of subject
systems and number of code smells detected) for production source code to under-
stand characteristics of code smells at different granularities and to explore interesting
relationships such as correlation and collocation.

• The software engineering research community may utilize the dataset of smells. The
dataset could be useful in many ways including benchmarking and comparison as
well as exploring other dimensions and characteristics of source code with smells.

• A method to identify smell catalog belonging to a domain (for instance, Infrastructure
as Code). The method performs empirical study to analyze configuration code and
explore characteristics specific to configuration code as well as analysis such as intra-
as well as inter-category correlation.

• A way to design a qualitative survey aimed to collect developers’ perspective on
database schema design practices and smells.

• A method to investigate code quality of embedded SQL statements by mining a large
set of repositories belonging to both open-source and proprietary categories. The
method also outlines the challenges involved (such as extracting embedded sql state-
ments).

136 / 168 6.2. CONTRIBUTIONS OF THE THESIS

• A detailed mechanism to show the feasibility of detecting code smells using deep
learning methods. Also, the method implements transfer-learning to showcase that a
deep learning classifier trained from a programming language can be used to identify
smelly code fragments belonging to another programming language.

Apart from research-oriented contributions, the thesis also offers contributions towards
software engineering practice.

• The thesis offers a comprehensive code smells detection tool — Designite which could
be used to detect a wide variety of implementation, design, and architecture smells
in C# source code. Practitioners may use the tool and various features offered by the
tool to identify maintainability issues in their code and reduce technical debt.

• As a by-product of our literature survey, we offer a large catalog of software smells.
This catalog summarize the smells by providing a description, related smells, tools
that could be used to detect them, as well as the reference to the article where it was
introduced. Not only the catalog is publicly accessible1 but also the data and source
code to build the smell catalog has been made open source.

• Practitioners may take advantage of of correlation analysis that makes it imperative
for the development teams to analyze and refactor smells at all granularities. Similarly,
software development teams may emphasize the importance of detecting and refac-
toring smells at all granularities following our observations that a significant amount
of architecture smells persists even if all the detected design smells were refactored.

• Practitioners can identify configuration smells using the tool viz. Puppeteer employed
in this study and adopt best practices to write maintainable configuration code. Pup-
peteer [Sha19e] has been made open-source under liberal license and the time of writ-
ing this statement, it attracted 34 stars and 10 forks.

• Practitioners can learn the potential quality issues that may arise in their database
schema so that they can avoid them. Furthermore, practitioners can identify database
schema smells using our open-source tool (i.e., DbDeo [Sha18b]) employed in this
thesis. Finally, our results pinpoint areas where improvements in database APIs, tool
support, training, and standards can increase the quality of database schemas.

• The tool developers may induct the deep learning methods in their smell detection
tools for effective smell detection and using transfer-learning to detect smells for pro-
gramming languages where the comprehensive code smell detection tools are not
available.

1http://www.tusharma.in/smells/

http://www.tusharma.in/smells/

137 / 168 6.3. FUTURE WORK

6.3 Future Work
We would like to extend and build upon our work presented in the thesis. Specifically, we
would like to explore the following in the future.

• Making code smells detection tools more effective: The present set of smell
detection tools generate a list of smells; the number of reported smells could be over-
whelming for a large project. Despite some research attempts to prioritize smells, the
production quality tools at large lack the features to identify smells that the developers
really consider quality issues and propose highly impactful refactoring to eliminate
them. Deep learning methods show a promising mechanism to achieve the goal.

• Automated refactoring support for architecture smells: Researchers have iden-
tified the lack of adequate tool support as one of the deterrents for software devel-
opers in adopting and performing refactoring regularly. Providing automated refac-
toring support to remove the detected code smells is inherently challenging even for
implementation granularity given the various possible alternative refactorings for a
smell. The challenge becomes immense when it comes to refactor architecture smells
because a composite refactoring involves many smaller scale refactorings spanning
multiple components.

• Software data analytics: Today’s software systems are producing different kinds
of data throughout the life-cycle; it includes, source-code itself and version control
system data, reported bugs/issues and the discussion that follows, software quality
data including metrics and smells, profiling data, logs and crash reports, and test ex-
ecution data. All of this tells something about a different aspect about the software.
Furthermore, combining them together may reveal further insights which can be ac-
tionable and useful for software development teams. For example, carrying out a
postmortem analysis upon filing a new bug/issue may reveal interesting insights and
patterns about the individual developers by analyzing code that has been changed,
version control system data and test coverage. We would be very interested to apply
exploratory machine learning methods to bring it to life.

Appendix I: Smell Definitions

Many authors have defined smells from their perspective. This appendix attempts to provide
a consolidated list of such definitions.

1. Smells are certain structures in the code that suggest (sometimes they scream for) the
possibility of refactoring [Fow99].

2. Code smells are a metaphor to describe patterns that are generally associated with
bad design and bad programming practices [vEM12].

3. Code smells are indicators or symptoms of the possible presence of design smells
[MG07].

4. Code smells are implementation structures that negatively affect system lifecycle prop-
erties, such as understandability, testability, extensibility, and reusability; that is, code
smells ultimately result in maintainability problems [GPEM09].

5. A “bad smell” describes a situation where there are hints that suggest there can be a
design problem [PC09].

6. We define design defects as solutions to recurring problems that generate negative
consequences on the quality of object-oriented systems [MGDM10].

7. Antipatterns are “poor” solutions to recurring implementation and design problems
that impede the maintenance and evolution of programs [KVGS11].

8. Anti-patterns are bad solutions to recurring design problems [FBA11].

9. An anti-pattern is a commonly occurring solution to a recurring problem that will
typically negatively impact code quality. Code smells are considered to be symptoms
of anti-patterns and occur at source code level [PZ12].

10. Antipatterns are defined as patterns that appear obvious but are ineffective or far from
optimal in practice, representing worst practices about how to structure and design
an ontology [RCSZ+12].

11. Anti-patterns are “poor” solutions to recurring design and implementation problems
[MAB+12b].

138

139 / 168 6.3. FUTURE WORK

12. Developers often introduce bad solutions, anti-patterns, to recurring design prob-
lems in their systems and these anti-patterns lead to negative effects on code quality
[JGHK13].

13. Linguistic antipatterns in software systems are recurring poor practices in the nam-
ing, documentation, and choice of identifiers in the implementation of an entity, thus
possibly impairing program understanding [ADPAG13].

14. Design smells are structures in the design that indicate violation of fundamental de-
sign principles and negatively impact design quality [SSS14].

15. Code smells are indicators of deeper design problems that may cause difficulties in
the evolution of a software system [Yam14].

16. Performance Antipatterns define bad practices that induce performance problems,
and their solutions [CDMT14].

17. Antipatterns are typically a commonly used set of design and coding constructs which
might appear intuitive initially, but eventually may be detrimental to one or more
aspects of the system [SA14].

18. Bad design practices at the code level are known as bad smells in the literature [KEA16].

19. Code smells — microstructures in the program —- have been used to reveal surface
indications of a design problem [dSS16].

20. Configuration smells are the characteristics of a configuration program or script that
violate the recommended best practices and potentially affect the program’s quality
in a negative way [SFS16].

Bibliography

[AAK+17] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and
Daniel J Inman. Real-time vibration-based structural damage detection us-
ing one-dimensional convolutional neural networks. Journal of Sound and
Vibration, 388:154–170, 2017.

[ABDS18] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):81, 2018.

[ABT15] Davide Arcelli, Luca Berardinelli, and Catia Trubiani. Performance Antipat-
tern Detection through fUML Model Library. In WOSP ’15: Proceedings of the
2015 Workshop on Challenges in Performance Methods for Software Develop-
ment, pages 23–28. University of L’Aquila, ACM, January 2015.

[ACSS15] Diogo Almeida, José Creissac Campos, João Saraiva, and João Carlos Silva.
Towards a catalog of usability smells. In SAC ’15: Proceedings of the 30th
Annual ACM Symposium on Applied Computing, pages 175–181. University
of Minho, ACM, April 2015.

[AD15] Jehad Al Dallal. Identifying refactoring opportunities in object-oriented
code: A systematic literature review. Information and Software Technology,
58:231–249, January 2015.

[ADPAG13] Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and Yann-
Gaël Guéhéneuc. A New Family of Software Anti-patterns: Linguistic Anti-
patterns. In CSMR ’13: Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering, pages 187–196. IEEE Computer So-
ciety, March 2013.

[AFBZ12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic
detection of bad smells in code: An experimental assessment. The Journal of
Object Technology, 11(2):5:1–38, 2012.

[AFF14] Péricles Alves, Eduardo Figueiredo, and Fabiano Ferrari. Avoiding Code Pit-
falls in Aspect-Oriented Programming. In Computational Science and Its Ap-
plications – ICCSA 2012, pages 31–46. Springer International Publishing, 2014.

140

141 / 168 BIBLIOGRAPHY

[AGJ08] Silvia T Acuña, Marta Gómez, and Natalia Juristo. Towards understand-
ing the relationship between team climate and software quality–a quasi-
experimental study. Empirical Software Engineering, 13(4):339–342, August
2008.

[AHTM11] Surafel LemmaAbebe, Sonia Haiduc, Paolo Tonella, andAndrianMarcus. The
effect of lexicon bad smells on concept location in source code. In Proceed-
ings - 11th IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2011, pages 125–134. Fondazione Bruno Kessler, Trento,
Italy, IEEE, November 2011.

[APFC15] Ramon Abílio, Juliana Padilha, Eduardo Figueiredo, and Heitor Costa. De-
tecting Code Smells in Software Product Lines – An Exploratory Study. In
ITNG ’15: Proceedings of the 2015 12th International Conference on Information
Technology - New Generations, pages 433–438. IEEE Computer Society, April
2015.

[APG17] Carol V Alexandru, Sebastiano Panichella, and Harald C Gall. Replicating
parser behavior using neural machine translation. In Proceedings of the 25th
International Conference on Program Comprehension, pages 316–319. IEEE
Press, 2017.

[APS16] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional atten-
tion network for extreme summarization of source code. In International
Conference on Machine Learning, pages 2091–2100, 2016.

[Bai94] Kenneth D Bailey. Typologies and taxonomies: an introduction to classification
techniques, volume 102. Sage, 1994.

[BBEAM10] Sérgio Bryton, Fernando Brito E Abreu, and Miguel Monteiro. Reducing sub-
jectivity in code smells detection: Experimenting with the Long Method.
In Proceedings - 7th International Conference on the Quality of Information
and Communications Technology, QUATIC 2010, pages 337–342. Faculdade de
Ciencias e Tecnologia, New University of Lisbon, Caparica, Portugal, IEEE,
December 2010.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

[BDLDP+15] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto,
and Fabio Palomba. An experimental investigation on the innate relationship
between quality and refactoring. Journal of Systems and Software, 107:1–14,
January 2015.

142 / 168 BIBLIOGRAPHY

[Bec02] Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

[BGH+08] David Binkley, Nicolas Gold, Mark Harman, Zheng Li, Kiarash Mahdavi, and
Joachim Wegener. Dependence Anti Patterns. In Aramis 2008 - 1st Interna-
tional Workshop on Automated engineeRing of Autonomous and runtiMe evolv-
Ing Systems, and ASE2008 the 23rd IEEE/ACM Int. Conf. Automated Software
Engineering, pages 25–34. King’s College London, London, United Kingdom,
IEEE, December 2008.

[BGvS11] Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa. An exploratory
study of code smells in evolving aspect-oriented systems. In AOSD ’11: Pro-
ceedings of the tenth international conference on Aspect-oriented software de-
velopment, page 203. Pontifical Catholic University of Rio de Janeiro, ACM,
March 2011.

[BINF12] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and Michalis Faloutsos. Graph-
based analysis and prediction for software evolution. In 34th International
Conference on Software Engineering (ICSE), pages 419–429, June 2012.

[BKG19] Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. A machine-
learning based ensemble method for anti-patterns detection, 2019.

[BLV07] Huib Van Den Brink, Rob Van Der Leek, and Joost Visser. Quality assess-
ment for embedded sql. In Proceedings of the Seventh IEEE International Work-
ing Conference on Source Code Analysis and Manipulation, SCAM ’07, pages
163–170. IEEE Computer Society, 2007.

[BMMM98] William H. Brown, Raphael C. Malveau, Hays W. ”Skip” McCormick, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley & Sons, Inc., 1st edition, 1998.

[BMR+96a] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture Volume 1: A System of
Patterns. Wiley, 1 edition, 1996.

[BMR+96b] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture Volume 1: A System of
Patterns. Wiley, 1 edition, 1996.

[BPD17] Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. Datastories at
semeval-2017 task 4: Deep lstm with attention for message-level and topic-
based sentiment analysis. In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 747–754, 2017.

143 / 168 BIBLIOGRAPHY

[BQO+12] Gabriele Bavota, AbdallahQusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their
impact on softwaremaintenance. In IEEE International Conference on Software
Maintenance, ICSM, pages 56–65. Universita di Salerno, Salerno, Italy, IEEE,
December 2012.

[BQO+14] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. Are test smells really harmful? An empirical study. Empirical Soft-
ware Engineering, 20(4):1052–1094, May 2014.

[BSH+11] Benjamin Biegel, Quinten David Soetens, Willi Hornig, Stephan Diehl, and
Serge Demeyer. Comparison of similarity metrics for refactoring detection.
In Proceedings of the 8th Working Conference on Mining Software Repositories,
MSR ’11, pages 53–62. ACM, 2011.

[CDMT14] Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani. An approach
for modeling and detecting software performance antipatterns based on first-
order logics. Software and SystemsModeling (SoSyM), 13(1):391–432, February
2014.

[Che15] T. Chen. Improving the quality of large-scale database-centric software sys-
tems by analyzing database access code. 2015 31st IEEE International Confer-
ence on Data Engineering Workshops (ICDEW), 00, 2015.

[Che18] Chef: Do Change, Last accessed on: Nov 14, 2018. Available at: https:
//www.chef.io/.

[Cho17] Francois Chollet. Deep learning with python. Manning Publications Co., 2017.

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transaction of Software Engineering, 20(6):476–493, June 1994.

[CMC15] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting
software design defects using relational association rule mining. Knowledge
and Information Systems, 42(3):545–577, March 2015.

[CMRP16] Karina Curcio, Andreia Malucelli, Sheila Reinehr, andMarco Antônio Paludo.
An analysis of the factors determining software product quality: A compar-
ative study. Computer Standards & Interfaces, 48:10–18, November 2016.

[CMRT10] Vittorio Cortellessa, Anne Martens, Ralf Reussner, and Catia Trubiani. A
process to effectively identify ”guilty” performance antipatterns. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), pages 368–382. Universita degli
Studi dell’Aquila, L’Aquila, Italy, Springer Berlin Heidelberg, April 2010.

https://www.chef.io/
https://www.chef.io/

144 / 168 BIBLIOGRAPHY

[Coh60] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[CPD16] PMD-CPD: Copy Paste Detector. https://pmd.github.io/, 2016.
[Online; accessed 22-Jan-2016].

[CS78] E.F. Connor and D. Simberloff. Species number and compositional similarity
of the galapagos flora and avifauna. Ecological Monographs, (48):219–248,
1978.

[CSJ+14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. Detecting performance anti-patterns for appli-
cations developed using object-relational mapping. In ICSE 2014: Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014, pages
1001–1012. Queen’s University, Kingston, ACM, May 2014.

[CvMG+14] Kyunghyun Cho, Bart vanMerrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, 2014.

[dAAC14a] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. Architectural
bad smells in software product lines: An exploratory study. In Proceedings of
theWICSA 2014 Companion Volume, WICSA ’14 Companion, pages 12:1–12:6.
ACM, 2014.

[dAAC14b] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. Architectural
bad smells in software product lines: An exploratory study. In Proceedings of
theWICSA 2014 Companion Volume, WICSA ’14 Companion, pages 12:1–12:6.
ACM, 2014.

[dbS10] What are the most common SQL anti-patterns? http:
//stackoverflow.com/questions/346659/
what-are-the-most-common-sql-anti-patterns, 2010.
[Online; accessed 25-Jan-2017].

[DD16] Tuhin Kanti Das and Juergen Dingel. Model development guidelines for
UML-RT: conventions, patterns and antipatterns. Software & Systems Model-
ing, pages 1–36, July 2016.

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

[Deu01] Deursen, A. Van and L. Moonen and Bergh, A. Van Den and G. Kok. Refac-
toring test code. In M. Marchesi, editor, Proceedings of the 2nd International

https://pmd.github.io/
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns
http://stackoverflow.com/questions/346659/what-are-the-most-common-sql-anti-patterns

145 / 168 BIBLIOGRAPHY

Conference on Extreme Programming and Flexible Processes (XP2001), pages
92–95. University of Cagliari, 2001.

[DPXT13] Jiang Dexun, Ma Peijun, Su Xiaohong, and Wang Tiantian. Detection and
Refactoring of Bad Smell Caused by Large Scale. International Journal of
Software Engineering & Applications, 4(5):1–13, September 2013.

[dSS16] Leonardo da Silva Sousa. Spotting design problems with smell agglomera-
tions. In ICSE ’16: Proceedings of the 38th International Conference on Software
Engineering Companion, pages 863–866. Pontifical Catholic University of Rio
de Janeiro, ACM, May 2016.

[EAM09] Mohamed El-Attar and James Miller. Improving the quality of use case mod-
els using antipatterns. Software & Systems Modeling, 9(2):141–160, February
2009.

[Ern17] Michael D Ernst. Natural language is a programming language: Applying
natural language processing to software development. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 71. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[EV15] Erki Eessaar and Janina Voronova. Using SQL Queries to Evaluate the Design
of SQL Databases, pages 179–186. Springer International Publishing, 2015.

[FBA11] Rahma Fourati, Nadia Bouassida, and Hanêne Ben Abdallah. A Metric-Based
Approach for Anti-pattern Detection in UML Designs. In Computer and In-
formation Science 2011, pages 17–33. Springer Berlin Heidelberg, 2011.

[FBB+12] Kecia AM Ferreira, Mariza A S Bigonha, Roberto S Bigonha, Luiz F OMendes,
and Heitor C Almeida. Identifying thresholds for object-oriented software
metrics. Journal of Systems and Software, 85(2):244–257, February 2012.

[FDW+16] Francesca Arcelli Fontana, Jens Dietrich, BartoszWalter, Aiko Yamashita, and
Marco Zanoni. Antipattern and Code Smell False Positives: Preliminary Con-
ceptualization and Classification. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 609–613.
IEEE, 2016.

[FFM+13] Francesca Arcelli Fontana, Vincenzo Ferme, AlessandroMarino, BartoszWal-
ter, and PawelMartenka. Investigating the Impact of Code Smells on System’s
Quality: An Empirical Study on Systems of Different Application Domains.
In 2013 IEEE International Conference on Software Maintenance (ICSM), pages
260–269. IEEE, September 2013.

[FFZY15] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and Aiko Ya-
mashita. Automatic metric thresholds derivation for code smell detection.

146 / 168 BIBLIOGRAPHY

In WETSoM ’15: Proceedings of the Sixth International Workshop on Emerging
Trends in Software Metrics, pages 44–53. University of Lugano, IEEE Press,
May 2015.

[FGL12] Stephen R Foster, William G Griswold, and Sorin Lerner. Witchdoctor: Ide
support for real-time auto-completion of refactorings. In Software Engineer-
ing (ICSE), 2012 34th International Conference on, pages 222–232. IEEE, 2012.

[FM13] Amin Milani Fard and Ali Mesbah. JSNOSE: Detecting javascript code
smells. In IEEE 13th International Working Conference on Source Code Anal-
ysis and Manipulation, SCAM 2013, pages 116–125. The University of British
Columbia, Vancouver, Canada, IEEE, January 2013.

[FM17] Wei Fu and Tim Menzies. Easy over hard: A case study on deep learning.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, pages 49–60. ACM, 2017.

[FOV+16] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Ed-
uardo Figueiredo. A review-based comparative study of bad smell detection
tools. In EASE ’16: Proceedings of the 20th International Conference on Evalua-
tion and Assessment in Software Engineering, pages 18–12. Federal University
of Minas Gerais, ACM, June 2016.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Programs.
Addison-Wesley Professional, 1 edition, 1999.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 1 edition, 2002.

[FPRZ16] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco
Zanoni. Automatic detection of instability architectural smells. In Software
Maintenance and Evolution (ICSME), 2016 IEEE International Conference on,
pages 433–437. IEEE, 2016.

[FS15] Shizhe Fu and Beijun Shen. Code Bad Smell Detection through Evolutionary
Data Mining. In International Symposium on Empirical Software Engineer-
ing and Measurement, pages 41–49. Shanghai Jiaotong University, Shanghai,
China, IEEE, November 2015.

[FSMS15] Wolfram Fenske, Sandro Schulze, Daniel Meyer, and Gunter Saake. When
code smells twice as much: Metric-based detection of variability-aware code
smells. In 2015 IEEE 15th International Working Conference on Source Code
Analysis andManipulation, SCAM 2015 - Proceedings, pages 171–180. Otto von
Guericke University of Magdeburg, Magdeburg, Germany, IEEE, November
2015.

147 / 168 BIBLIOGRAPHY

[FTC07] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou. JDeodor-
ant: Identification and Removal of Feature Envy Bad Smells. In 2007 IEEE
International Conference on Software Maintenance, pages 519–520. Panepis-
timion Makedonias, Thessaloniki, Greece, IEEE, 2007.

[FVE91] Daniel J Felleman andDavid CVan Essen. Distributed hierarchical processing
in the primate cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

[Gar14] Joshua Garcia. Technical report: Architectural Smell Definitions and Formal-
izations. http://csse.usc.edu/TECHRPTS/2014/reports/
usc-csse-2014-500.pdf, 2014. [Online; accessed 16-June-2017].

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[GEBK15] Adnane Ghannem, Ghizlane El Boussaidi, and Marouane Kessentini. On the
use of design defect examples to detect model refactoring opportunities. Soft-
ware Quality Journal, pages 1–19, March 2015.

[GG15] Yarin Gal and Zoubin Ghahramani. A Theoretically Grounded Appli-
cation of Dropout in Recurrent Neural Networks. arXiv e-prints, page
arXiv:1512.05287, Dec 2015.

[GGC14] E. Guimaraes, A. Garcia, and Y. Cai. Exploring blueprints on the prioritiza-
tion of architecturally relevant code anomalies – a controlled experiment. In
2014 IEEE 38th Annual Computer Software and Applications Conference, pages
344–353, July 2014.

[Git16] GitHub. https://github.com/, 2016. [Online; accessed 22-Jan-2016].

[GJM13] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech
recognitionwith deep bidirectional lstm. InAutomatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop on, pages 273–278. IEEE, 2013.

[GKA+16] Latifa Guerrouj, Zeinab Kermansaravi, Venera Arnaoudova, Benjamin C M
Fung, Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. Investi-
gating the relation between lexical smells and change- and fault-proneness:
an empirical study. Software Quality Journal, pages 1–30, May 2016.

[GL16] Joseph Yossi Gil and Gal Lalouche. When do Software Complexity Metrics
Mean Nothing? – When Examined out of Context. The Journal of Object
Technology, 15(1):2:1, 2016.

[Gou13] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR ’13, pages
233–236, Piscataway, NJ, USA, 2013. IEEE Press.

http://csse.usc.edu/TECHRPTS/2014/reports/usc-csse-2014-500.pdf
http://csse.usc.edu/TECHRPTS/2014/reports/usc-csse-2014-500.pdf
https://github.com/

148 / 168 BIBLIOGRAPHY

[GPEM09] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. To-
ward a catalogue of architectural bad smells. In Proceedings of the 5th Inter-
national Conference on the Quality of Software Architectures: Architectures for
Adaptive Software Systems, QoSA ’09, pages 146–162. Springer-Verlag, 2009.

[GPKS17] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fix-
ing common c language errors by deep learning. In AAAI, pages 1345–1351,
2017.

[GS12] G. Gousios and D. Spinellis. GHTorrent: Github’s data from a firehose. In 9th
IEEE Working Conference on Mining Software Repositories, pages 12–21, June
2012.

[GSK+17] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural
networks and learning systems, 28(10):2222–2232, 2017.

[GvDS13] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Automated
Detection of Test Fixture Strategies and Smells. In 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation (ICST), pages
322–331. IEEE, January 2013.

[GVG+] E. Guimarães, S. Vidal, A. Garcia, J. A. Diaz Pace, and C. Marcos. Exploring
architecture blueprints for prioritizing critical code anomalies: Experiences
and tool support. Software: Practice and Experience, 48(5):1077–1106.

[HAT+04] H H Hallal, E Alikacem, W P Tunney, S Boroday, and A Petrenko.
Antipattern-Based Detection of Deficiencies in Java Multithreaded Software.
In QSIC ’04: Proceedings of the Quality Software, Fourth International Con-
ference, pages 258–267. Cent de Recherche Informatique de Montreal, IEEE
Computer Society, September 2004.

[HBS+12] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar De-
vanbu. On the naturalness of software. In Software Engineering (ICSE), 2012
34th International Conference on, pages 837–847. IEEE, 2012.

[HD17] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks
the best choice for modeling source code? In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 763–773. ACM,
2017.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Profes-
sional, 1 edition, 2010.

149 / 168 BIBLIOGRAPHY

[HJE+13] Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Lars Heinemann,
Rudolf Vaas, and Peter Braun. Hunting for smells in natural language tests.
In ICSE ’13: Proceedings of the 2013 International Conference on Software Engi-
neering, pages 1217–1220. Technical University of Munich, IEEE Press, May
2013.

[HLZ16] Xuan Huo, Ming Li, and Zhi-Hua Zhou. Learning unified features from nat-
ural and programming languages for locating buggy source code. In IJCAI,
pages 1606–1612, 2016.

[HMR16] GeoffreyHecht, NaouelMoha, and Romain Rouvoy. An empirical study of the
performance impacts of Android code smells. In MOBILESoft ’16: Proceedings
of the International Workshop on Mobile Software Engineering and Systems.
Universite Lille 2 Droit et Sante, ACM, May 2016.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning al-
gorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[HPvD12] F. Hermans, M. Pinzger, and A. van Deursen. Detecting code smells in spread-
sheet formulas. In 28th IEEE International Conference on SoftwareMaintenance
(ICSM), pages 409–418, Sept 2012.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[HW62] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiol-
ogy, 160(1):106–154, 1962.

[HZBS14] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some Code Smells Have
a Significant but Small Effect on Faults. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 23(4):33–39, September 2014.

[IKCZ16] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Sum-
marizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 2073–2083, 2016.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proceedings of
the 32nd International Conference on International Conference on Machine
Learning-Volume 37, pages 448–456. JMLR. org, 2015.

[JA15] Yujuan Jiang and Bram Adams. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In Proceedings of the 12th Working Conference
on Mining Software Repositories, MSR ’15, pages 45–55, Piscataway, NJ, USA,
2015. IEEE Press.

150 / 168 BIBLIOGRAPHY

[JGHK13] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. Min-
ing the relationship between anti-patterns dependencies and fault-proneness.
In Proceedings - Working Conference on Reverse Engineering, WCRE, pages
351–360. Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, 2013.

[JZ15] Rie Johnson and Tong Zhang. Effective use of word order for text catego-
rization with convolutional neural networks. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 103–112, 2015.

[Kar10] Bill Karwin. SQL Antipatterns: Avoiding the Pitfalls of Database Programming.
Pragmatic Bookshelf, 1st edition, 2010.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[KBF16] Oren Z Kraus, Jimmy Lei Ba, and Brendan J Frey. Classifying and segment-
ing microscopy images with deep multiple instance learning. Bioinformatics,
32(12):i52–i59, 2016.

[KDPG09] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. An Ex-
ploratory Study of the Impact of Code Smells on Software Change-proneness.
In 2009 16th Working Conference on Reverse Engineering, pages 75–84. Ecole
Polytechnique de Montreal, Montreal, Canada, IEEE, December 2009.

[KDPGA12] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering, 17(3):243–275, June
2012.

[KEA16] Yasser A Khan and Mohamed El-Attar. Using model transformation to refac-
tor use case models based on antipatterns. Information Systems Frontiers,
18(1):171–204, 2016.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[KHRS12] Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, and Andreas
Stefik. Do static type systems improve the maintainability of software sys-
tems? An empirical study. In 2012 IEEE 20th International Conference on
Program Comprehension (ICPC), pages 153–162. Universitat Duisburg-Essen,
Essen, Germany, IEEE, 2012.

[KKS+14] Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh, and
Ali Ouni. A Cooperative Parallel Search-Based Software Engineering Ap-
proach for Code-Smells Detection. IEEE Transactions on Software Engineering,
40(9):841–861, 2014.

151 / 168 BIBLIOGRAPHY

[Koe95] Andrew Koenig. Patterns and antipatterns. JOOP, 8(1):46–48, 1995.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural infor-
mation processing systems, pages 1097–1105, 2012.

[KVGS09] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari
Sahraoui. A Bayesian Approach for the Detection of Code and Design Smells.
In QSIC ’09: Proceedings of the 2009 Ninth International Conference on Quality
Software, pages 305–314. IEEE Computer Society, August 2009.

[KVGS11] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari
Sahraoui. BDTEX: A GQM-based Bayesian approach for the detection of
antipatterns. In Journal of Systems and Software, pages 559–572. Ecole Poly-
technique de Montreal, Montreal, Canada, 2011.

[KŽ07] Jaroslav Král and Michal Žemlička. The most important service-oriented an-
tipatterns. In 2nd International Conference on Software Engineering Advances
- ICSEA 2007, pages 29–29. Charles University in Prague, Prague, Czech Re-
public, IEEE, December 2007.

[Lar16a] Gary Larizza. Building a Functional Puppet Workflow Part 1: Module Struc-
ture. http://www.webcitation.org/6g23RY7yS, 2016. [On-
line; accessed 15-Mar-2016].

[Lar16b] Gary Larizza. Building a Functional Puppet Workflow Part 2: Module Struc-
ture. http://www.webcitation.org/6g23YeuFl, 2016. [On-
line; accessed 15-Mar-2016].

[Lar16c] Gary Larizza. Doing the Refactor Dance — Making Your Puppet Modules
More Modular. http://www.webcitation.org/6g23dnNKo,
2016. [Online; accessed 15-Mar-2016].

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LBG+16] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann,
Tomáš Kočiskỳ, FuminWang, and Andrew Senior. Latent predictor networks
for code generation. In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
599–609, 2016.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

http://www.webcitation.org/6g23RY7yS
http://www.webcitation.org/6g23YeuFl
http://www.webcitation.org/6g23dnNKo

152 / 168 BIBLIOGRAPHY

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
2, 2010.

[LCCY13] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis. Identifica-
tion of refused bequest code smells. In 2013 IEEE International Conference on
Software Maintenance, pages 392–395, Sept 2013.

[LGTB97] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face
recognition: A convolutional neural-network approach. IEEE transactions on
neural networks, 8(1):98–113, 1997.

[LHZL17] Jian Li, Pinjia He, Jieming Zhu, andMichael R Lyu. Software defect prediction
via convolutional neural network. In SoftwareQuality, Reliability and Security
(QRS), 2017 IEEE International Conference on, pages 318–328. IEEE, 2017.

[LK00] A Lauder and S Kent. Legacy System Anti-Patterns and a Pattern-Oriented
Migration Response. In Systems Engineering for Business Process Change,
pages 239–250. Springer London, 2000.

[LLNL16] Hui Liu, Qiurong Liu, Zhendong Niu, and Yang Liu. Dynamic and Automatic
Feedback-BasedThreshold Adaptation for Code Smell Detection. IEEE Trans-
actions on Software Engineering, 42(6):544–558, June 2016.

[LLSM18] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic. An empirical study
of architectural decay in open-source software. In 2018 IEEE International
Conference on Software Architecture (ICSA), pages 176–17609, April 2018.

[LMSN12] H. Liu, Z. Ma, W. Shao, and Z. Niu. Schedule of bad smell detection and reso-
lution: A new way to save effort. IEEE Transactions on Software Engineering,
38(1):220–235, 2012.

[Lon01] John Long. Software reuse antipatterns. ACM SIGSOFT Software Engineering
Notes, 26(4):68–76, July 2001.

[LPM15] Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-
proaches to attention-based neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
1412–1421, 2015.

[LR06] Martin Lippert and Stephen Roock. Refactoring in large software projects: per-
forming complex restructurings successfully. John Wiley & Sons, 2006.

[LR15] Mathieu Lavallée and Pierre N Robillard. Why good developers write bad
code: An observational case study of the impacts of organizational factors

153 / 168 BIBLIOGRAPHY

on software quality. In Proceedings - International Conference on Software En-
gineering, pages 677–687. Polytechnique Montréal, Montreal, Canada, IEEE,
August 2015.

[LVKM+14] Mario Linares-Vásquez, Sam Klock, Collin McMillan, Aminata Sabané, Denys
Poshyvanyk, and Yann-Gaël Guéhéneuc. Domain matters: bringing further
evidence of the relationships among anti-patterns, application domains, and
quality-related metrics in Java mobile apps. In ICPC 2014: Proceedings of the
22nd International Conference on Program Comprehension, pages 232–243.The
College of William and Mary, ACM, June 2014.

[LXZ18] Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning based feature envy
detection. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, pages 385–396, New York, NY,
USA, 2018. ACM.

[LYC17] Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition
from accelerometer data using convolutional neural network. In Big Data
and Smart Computing (BigComp), 2017 IEEE International Conference on, pages
131–134. IEEE, 2017.

[MAB+12a] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël
Guéhéneuc, and Esma Aïmeur. SMURF: A SVM-based incremental anti-
pattern detection approach. In Proceedings - Working Conference on Reverse
Engineering, WCRE, pages 466–475. Ptidej Team, IEEE, December 2012.

[MAB+12b] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané, Yann-Gaël
Guéhéneuc, Giuliano Antoniol, and Esma Aïmeur. Support vector machines
for anti-pattern detection. In ASE 2012: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages 278–281.
Polytechnic School of Montreal, ACM, September 2012.

[Mar01] K. Marquardt. Dependency structures–architectural diagnoses and therapies.
In Proceedings of the EuroPLop, 2001.

[Mar02] Robert C Martin. Agile software development: principles, patterns, and prac-
tices. Prentice Hall, 2002.

[Mar04] Radu Marinescu. Detection strategies: Metrics-based rules for detecting de-
sign flaws. In Proceedings of the 20th IEEE International Conference on Software
Maintenance, ICSM ’04, pages 350–359. IEEE Computer Society, 2004.

[Mar05] RMarinescu. Measurement and quality in object-oriented design. In 21st IEEE
International Conference on Software Maintenance (ICSM’05), pages 701–704.
Universitatea Politehnica din Timisoara, Timisoara, Romania, IEEE, Decem-
ber 2005.

154 / 168 BIBLIOGRAPHY

[Mar10] James Martens. Deep learning via hessian-free optimization. In ICML, vol-
ume 27, pages 735–742, 2010.

[MBC14] A. Martini, J. Bosch, and M. Chaudron. Architecture technical debt: Under-
standing causes and a qualitativemodel. In 2014 40th EUROMICROConference
on Software Engineering and Advanced Applications, pages 85–92, Aug 2014.

[MCKX15] RanMo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot Patterns: The For-
mal Definition and Automatic Detection of Architecture Smells. In WICSA,
pages 51–60. IEEE Computer Society, 2015.

[MDP+11] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y.
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

[MFBR18] Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi, and Riccardo
Roveda. Identifying and prioritizing architectural debt through architectural
smells: A case study in a large software company. In 12th European Confer-
ence on Software Architecture (ECSA 2018), September 2018.

[MG07] Naouel Moha and Yann-Gaël Guéhéneuc. Decor: a tool for the detection
of design defects. In ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 527–528.
University of Montreal, ACM, 2007.

[MGDM10] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-
Françoise Le Meur. DECOR: A method for the specification and detection
of code and design smells. IEEE Trans. Software Eng., 36(1):20–36, 2010.

[MGP+12] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Med-
vidovic, and Arndt von Staa. Are automatically-detected code anomalies rele-
vant to architectural modularity? In the 11th annual international conference,
pages 167–178. ACM Press, 2012.

[MGvS10] Isela Macia, Alessandro Garcia, and Arndt von Staa. Defining and applying
detection strategies for aspect-oriented code smells. In Proceedings - 24th
Brazilian Symposium on Software Engineering, SBES 2010, pages 60–69. Pon-
tificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil, IEEE,
December 2010.

[MHB08] EmersonMurphy-Hill and Andrew P Black. Seven habits of a highly effective
smell detector. In the 2008 international workshop, pages 36–40. Portland State
University, Portland, United States, ACM Press, 2008.

155 / 168 BIBLIOGRAPHY

[MHB10] Emerson Murphy-Hill and Andrew P Black. An interactive ambient visual-
ization for code smells. In SOFTVIS ’10: Proceedings of the 5th international
symposium on Software visualization. North Carolina State University, ACM,
October 2010.

[MKCN17] NuthanMunaiah, Steven Kroh, Craig Cabrey, andMeiyappan Nagappan. Cu-
rating github for engineered software projects. Empirical Software Engineer-
ing, 22(6):3219–3253, Dec 2017.

[MKMD16] UsmanMansoor, Marouane Kessentini, Bruce RMaxim, and Kalyanmoy Deb.
Multi-objective code-smells detection using good and bad design examples.
Software Quality Journal, pages 1–24, February 2016.

[ML06] Mika V Mäntylä and Casper Lassenius. Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software Engi-
neering, 11(3):395–431, September 2006.

[MLZ+16] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural net-
works over tree structures for programming language processing. In AAAI,
volume 2, page 4, 2016.

[MNK+02] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi
Matsumoto. Software Quality Analysis by Code Clones in Industrial Legacy
Software. In METRICS ’02: Proceedings of the 8th International Symposium on
Software Metrics, page 87. IEEE Computer Society, June 2002.

[MS16] AlanMacCormack and Daniel J. Sturtevant. Technical debt and system archi-
tecture: The impact of coupling on defect-related activity. Journal of Systems
and Software, 120:170 – 182, 2016.

[MT04] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Trans-
actions on Software Engineering, 30(2):126–139, February 2004.

[Mun05] Matthew James Munro. Product Metrics for Automatic Identification of ”Bad
Smell” Design Problems in Java Source-Code. In METRICS ’05: Proceedings of
the 11th IEEE International Software Metrics Symposium (METRICS’05), pages
15–15. University of Strathclyde, IEEE Computer Society, September 2005.

[MVL03] Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. A Taxonomy and an
Initial Empirical Study of Bad Smells in Code. In ICSM ’03: Proceedings of the
International Conference on Software Maintenance. IEEE Computer Society,
September 2003.

[MY12] Leon Moonen and Aiko Yamashita. Do code smells reflect important main-
tainability aspects? In ICSM ’12: Proceedings of the 2012 IEEE International
Conference on Software Maintenance (ICSM). Simula Research Laboratory,
IEEE Computer Society, September 2012.

156 / 168 BIBLIOGRAPHY

[NC15] Csaba Nagy and Anthony Cleve. Mining stack overflow for discovering er-
ror patterns in sql queries. 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 00:516–520, 2015.

[NNN+12] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, Anh Tuan
Nguyen, and Tien N Nguyen. Detection of embedded code smells in dy-
namic web applications. In ASE 2012: Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 282–285. Iowa
State University, ACM, September 2012.

[NNN13] Anh TuanNguyen, TungThanhNguyen, and Tien NNguyen. Lexical statisti-
cal machine translation for language migration. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 651–654. ACM,
2013.

[Non15] Kwankamol Nongpong. Feature envy factor: A metric for automatic feature
envy detection. In Proceedings of the 2015-7th International Conference on
Knowledge and Smart Technology, KST 2015, pages 7–12. Assumption Univer-
sity, Bangkok, Bangkok, Thailand, IEEE, January 2015.

[NPT+18] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia.
Detecting code smells using machine learning techniques: Are we there yet?
In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), volume 00, pages 612–621, March 2018.

[OAH+18] Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson,
Cristiano Firmani, and Erik Linstead. Learning lexical features of program-
ming languages from imagery using convolutional neural networks. pages
336–339, 2018.

[OCBZ09] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. The evo-
lution and impact of code smells: A case study of two open source systems.
In 2009 3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 390–400. IEEE, August 2009.

[OFN+15] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. Learning to generate pseudo-code from
source code using statistical machine translation (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages
574–584. IEEE, 2015.

[OGC+15] Willian N. Oizumi, Alessandro F. Garcia, Thelma E. Colanzi, Manuele Fer-
reira, and Arndt V. Staa. On the relationship of code-anomaly agglomera-
tions and architectural problems. Journal of Software Engineering Research
and Development, 3(1):11, 2015.

157 / 168 BIBLIOGRAPHY

[OGdSS+16] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo,
and Yixue Zhao. Code anomalies flock together: Exploring code anomaly
agglomerations for locating design problems. In Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE ’16, pages 440–451, 2016.

[OKAG10] Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.
Numerical Signatures of Antipatterns: An Approach Based on B-Splines. In
CSMR ’10: Proceedings of the 2010 14th European Conference on Software Main-
tenance and Reengineering, pages 248–251. IEEE Computer Society, March
2010.

[OKKI15] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, and Katsuro Inoue.
Web Service Antipatterns Detection Using Genetic Programming. In GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pages 1351–1358. Osaka University, ACM, July 2015.

[Pal18] A large-scale empirical study on the lifecycle of code smell co-occurrences.
Information and Software Technology, 99:1 – 10, 2018.

[PBDP+15] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. Mining version histories for de-
tecting code smells. IEEE Transactions on Software Engineering, 41(5):462–489,
May 2015.

[PBP+14] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrea De Lucia. Do They Really Smell Bad? A Study on Developers’ Per-
ception of Bad Code Smells. In 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 101–110. IEEE, July 2014.

[PC09] Javier Pérez and Yania Crespo. Perspectives on automated correction of bad
smells. In the joint international and annual ERCIM workshops, pages 99–108.
Universidad de Valladolid, Valladolid, Spain, ACM Press, 2009.

[PDLBO14] Fabio Palomba, Andrea De Lucia, Gabriele Bavota, and Rocco Oliveto. Anti-
Pattern Detection. In Anti-pattern detection: Methods, challenges, and open
issues, pages 201–238. Elsevier, 2014.

[PDMG14] Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. De-
tection of REST patterns and antipatterns: A heuristics-based approach. In
Xavier Franch, Aditya K Ghose, Grace A Lewis, and Sami Bhiri, editors, Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pages 230–244. Universite du
Quebec a Montreal, Montreal, Canada, Springer Berlin Heidelberg, January
2014.

158 / 168 BIBLIOGRAPHY

[PHN+15] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. Learning program embeddings to propagate
feedback on student code. In International Conference on Machine Learning,
pages 1093–1102, 2015.

[PM15] Francis Palma and Naouel Mohay. A study on the taxonomy of service an-
tipatterns. In 2015 IEEE 2nd International Workshop on Patterns Promotion and
Anti-Patterns Prevention, PPAP 2015 - Proceedings, pages 5–8. Ecole Polytech-
nique de Montreal, Montreal, Canada, IEEE, January 2015.

[PMG13] Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc. Detection of pro-
cess antipatterns: A BPEL perspective. In Proceedings - IEEE International
Enterprise Distributed Object Computing Workshop, EDOC, pages 173–177. Eŕ-
cole Polytechnique, Canada, IEEE, January 2013.

[PNSLB16] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzi-
lay. sk_p: a neural program corrector for moocs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, pages 39–40. ACM, 2016.

[PNT+15] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco
Oliveto, Denys Poshyvanyk, and Andrea De Lucia. Landfill: An open dataset
of code smells with public evaluation. In Proceedings of the 12thWorking Con-
ference on Mining Software Repositories, MSR ’15, pages 482–485. IEEE Press,
2015.

[PPDL+16] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and
Andy Zaidman. A textual-based technique for Smell Detection. In 2016 IEEE
24th International Conference on Program Comprehension (ICPC), pages 1–10.
Universita di Salerno, Salerno, Italy, IEEE, 2016.

[PPF+14] Juliana Padilha, Juliana Pereira, Eduardo Figueiredo, Jussara Almeida,
Alessandro Garcia, and Claudio Sant’Anna. On the effectiveness of concern
metrics to detect code smells: An empirical study. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 656–671. Universidade Federal de Mi-
nas Gerais, Belo Horizonte, Brazil, Springer International Publishing, January
2014.

[PR11] Mikhail Perepletchikov and Caspar Ryan. A controlled experiment for eval-
uating the impact of coupling on the maintainability of service-oriented soft-
ware. IEEE Transactions on Software Engineering, 37(4):449–465, August 2011.

[Pup16a] Sonar Puppet. SonarQube Puppet Plugin, Last accessed on: 22nd
Jan 2016. Available at: https://github.com/iwarapter/
sonar-puppet.

https://github.com/iwarapter/sonar-puppet
https://github.com/iwarapter/sonar-puppet

159 / 168 BIBLIOGRAPHY

[Pup16b] Puppet Forge: a repository of Puppet modules, Last accessed on: 22nd Jan
2016. Available at: https://forge.puppetlabs.com.

[Pup16c] Puppet-lint: Puppet code style checker, Last accessed on: 22nd Jan 2016.
Available at: http://puppet-lint.com.

[Pup18] Puppet: Deliver better software, faster, Last accessed on: Nov 14, 2018. Avail-
able at: https://puppet.com/.

[PVZ+15] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recog-
nition. In BMVC, volume 1, page 6, 2015.

[PZ12] Ralph Peters and Andy Zaidman. Evaluating the lifespan of code smells using
software repository mining. In Proceedings of the 2012 16th European Confer-
ence on Software Maintenance and Reengineering, CSMR ’12, pages 411–416.
IEEE Computer Society, 2012.

[RA15] Ghulam Rasool and Zeeshan Arshad. A review of code smell mining tech-
niques. Journal of Software: Evolution and Process, 27(11):867–895, November
2015.

[Ram10] GirishMaskeri Rama. A desiderata for refactoring-based softwaremodularity
improvement. In ISEC ’10: Proceedings of the 3rd India software engineering
conference, pages 93–102. Infosys Technologies Limited India, ACM, February
2010.

[RCSZ+12] Catherine Roussey, Oscar Corcho, Ondrej Svab-Zamazal, François Scharffe,
and Stephan Bernard. SPARQL-DL queries for antipattern detection. In
WOP’12: Proceedings of the 3rd International Conference on Ontology Patterns
- Volume 929, pages 85–96. Cemagref, CEUR-WS.org, November 2012.

[Red17] Redgate. 119 SQL Code Smells. http://assets.red-gate.com/
community/books/sql-code-smells.pdf, 2017. [Online; ac-
cessed 8-Feb-2017].

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533, 1986.

[Rie96] A. J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1 edition, 1996.

[Rob10] Gregorio Robles. Replicating msr: A study of the potential replicability of
papers published in the mining software repositories proceedings. In Min-
ing Software Repositories (MSR), 2010 7th IEEE Working Conference on, pages
171–180. IEEE, 2010.

[RSG99] Linda H. Rosenberg, Ruth Stapko, and Al Gallo. Risk-based object oriented
testing. In Twenty-Fourth Annual Software Engineering Workshop, Greenbelt,
MD, December 1999. NASA, Software Engineering Laboratory.

https://forge.puppetlabs.com
http://puppet-lint.com
https://puppet.com/
http://assets.red-gate.com/community/books/sql-code-smells.pdf
http://assets.red-gate.com/community/books/sql-code-smells.pdf

160 / 168 BIBLIOGRAPHY

[SA13] Vibhu Saujanya Sharma and Samit Anwer. Detecting Performance Antipat-
terns before Migrating to the Cloud. In CLOUDCOM ’13: Proceedings of the
2013 IEEE International Conference on Cloud Computing Technology and Sci-
ence - Volume 01, pages 148–151. IEEE Computer Society, December 2013.

[SA14] Vibhu Saujanya Sharma and Samit Anwer. Performance antipatterns: Detec-
tion and evaluation of their effects in the cloud. In Proceedings - 2014 IEEE
International Conference on Services Computing, SCC 2014, pages 758–765. Ac-
centure Services Pvt Ltd., India, Bangalore, India, IEEE, January 2014.

[SCY+16] Tsubasa Saika, Eunjong Choi, Norihiro Yoshida, Shusuke Haruna, and Kat-
suro Inoue. Do Developers Focus on Severe Code Smells? In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 1–3. IEEE, 2016.

[SDPAG13] Aminata Sabané, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. A Study on the Relation between Antipatterns and the Cost
of Class Unit Testing. In CSMR ’13: Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, pages 167–176. IEEE
Computer Society, March 2013.

[SFS16] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your con-
figuration code smell? In Proceedings of the 13th International Workshop on
Mining Software Repositories, MSR’16, pages 189–200, 2016.

[Sha] title = Configuration smells dataset month = may year = 2016 doi
= 10.5281/zenodo.2567067 url = https://doi.org/10.5281/zenodo.2567067
Sharma, Tushar.

[Sha16] Tushar Sharma. Designite - A Software Design Quality Assessment Tool,
May 2016. http://www.designite-tools.com.

[Sha18a] Tushar Sharma. Database schema quality analysis dataset, May 2018.

[Sha18b] Tushar Sharma. Dbdeo: Database schema smells detector, May 2018.
https://github.com/tushartushar/dbdeo.

[Sha18c] Tushar Sharma. Designitejava, December 2018. https://github.com/tushar-
tushar/DesigniteJava.

[Sha19a] Tushar Sharma. Codesplit for c#, February 2019.

[Sha19b] Tushar Sharma. Codesplitjava, February 2019. https://github.com/tushar-
tushar/CodeSplitJava.

[Sha19c] Tushar Sharma. A dataset of code smells, January 2019.

161 / 168 BIBLIOGRAPHY

[Sha19d] Tushar Sharma. Designite validation data, January 2019.

[Sha19e] Tushar Sharma. Puppeteer, February 2019. https://github.com/tushar-
tushar/Puppeteer.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[SJW08] Lok Fang Fang Stella, Stan Jarzabek, and Bimlesh Wadhwa. A comparative
study of maintainability of web applications on J2EE, .NET and ruby on rails.
In Proceedings - 10th IEEE International Symposium onWeb Site Evolution,WSE
2008, pages 93–99. National University of Singapore, Singapore City, Singa-
pore, IEEE, December 2008.

[SK17] Satwinder Singh and Sharanpreet Kaur. A systematic literature review:
Refactoring for disclosing code smells in object oriented software. Ain Shams
Engineering Journal, pages –, 2017.

[SKBD14] Dilan Sahin, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. Code-
Smell Detection as a Bilevel Problem. ACMTransactions on Software Engineer-
ing and Methodology (TOSEM), 24(1):6–44, October 2014.

[SKS+15] Tara N Sainath, Brian Kingsbury, George Saon, Hagen Soltau, Abdel-rahman
Mohamed, George Dahl, and Bhuvana Ramabhadran. Deep convolutional
neural networks for large-scale speech tasks. Neural Networks, 64:39–48,
2015.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.

[SLT06] Mazeiar Salehie, Shimin Li, and Ladan Tahvildari. A Metric-Based Heuris-
tic Framework to Detect Object-Oriented Design Flaws. In ICPC ’06: Pro-
ceedings of the 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 159–168. University of Waterloo, IEEE Computer Society,
June 2006.

[SM06] Scott Stribrny and Fran BoehmeMackin. When politics overshadow software
quality. IEEE Software, 23(5):72–73, September 2006.

[Smi00] C Smith. Software performance antipatterns. In Proceedings Second Inter-
national Workshop on Software and Performance WOSP 2000, pages 127–136a.
Performance Engineering Services, Santa Fe, United States, December 2000.

162 / 168 BIBLIOGRAPHY

[SMT16] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. Designite — A Software
Design Quality Assessment Tool. In Proceedings of the First International
Workshop on Bringing Architecture Design Thinking into Developers’ Daily Ac-
tivities, BRIDGE ’16. ACM, 2016.

[Son16] SonarQube. http://www.sonarqube.org/, 2016. [Online; accessed
25-Oct-2016].

[Spi15] Diomidis Spinellis. Tools and Techniques for Analyzing Product and Pro-
cess Data. In Tim Menzies, Christian Bird, and Thomas Zimmermann, edi-
tors, The Art and Science of Analyzing Software Data, pages 161–212. Morgan-
Kaufmann, 2015.

[Spi19] Diomidis Spinellis. dspinellis/tokenizer: Version 1.1, February 2019.
https://github.com/dspinellis/tokenizer.

[SS17] Tushar Sharma and Diomidis Spinellis. Selected Resources for a Literature
Survey on Software Smells, November 2017.

[SS18] Tushar Sharma and Diomidis Spinellis. A survey on software smells. Journal
of Systems and Software, 138:158 – 173, 2018.

[SSN12] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks
for language modeling. In Thirteenth annual conference of the international
speech communication association, 2012.

[SSS14] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring
for Software Design Smells: Managing Technical Debt. Morgan Kaufmann, 1
edition, 2014.

[SSS15] Girish Suryanarayana, Tushar Sharma, and Ganesh Samarthyam. Software
Process versus Design Quality: Tug of War? IEEE Software, 32(4):7–11, 2015.

[SSS16] Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. Refactor-
ing for software architecture smells. In Proceedings of the 1st International
Workshop on Software Refactoring, pages 1–4. ACM, 2016.

[SSSG13] Ganesh Samarthyam, Girish Suryanarayana, Tushar Sharma, and Shrinath
Gupta. Midas: A design quality assessment method for industrial software.
In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 911–920, 2013.

[Sty16] Puppet language style guide. https://docs.puppetlabs.com/
guides/style_guide.html, 2016. [Online; accessed 22-Jan-2016].

[SVT16] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra.
Does technical debt lead to the rejection of pull requests? CoRR,
abs/1604.01450, 2016.

http://www.sonarqube.org/
https://docs.puppetlabs.com/guides/style_guide.html
https://docs.puppetlabs.com/guides/style_guide.html

163 / 168 BIBLIOGRAPHY

[SYA+13] Dag I K Sjoberg, Aiko Yamashita, BenteAnda, AudrisMockus, and ToreDyba.
Quantifying the Effect of Code Smells on Maintenance Effort. IEEE Transac-
tions on Software Engineering, 39(8):1144–1156, August 2013.

[SYKG16] Zephyrin Soh, Aiko Yamashita, Foutse Khomh, and Yann-Gaël Guéhéneuc.
Do Code Smells Impact the Effort of Different Maintenance Programming
Activities? In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 393–402. IEEE, 2016.

[SZV+13] Rodrigo O. Spínola, Nico Zazworka, Antonio Vetrò, Carolyn Seaman, and
Forrest Shull. Investigating technical debt folklore: Shedding some light on
technical debt opinion. In Proceedings of the 4th International Workshop on
Managing Technical Debt, MTD ’13, pages 1–7. IEEE Press, 2013.

[TAV13] Edith Tom, Aybüke Aurum, and Richard Vidgen. An exploration of technical
debt. Journal of Systems and Software, 86(6):1498 – 1516, 2013.

[TC11] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of methods. Journal
of Systems & Software, 84(10):1757–1782, October 2011.

[TCC08] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
JDeodorant: Identification and Removal of Type-Checking Bad Smells. In
CSMR ’08: Proceedings of the 2008 12th European Conference on Software Main-
tenance and Reengineering, pages 329–331. University of Macedonia, IEEE
Computer Society, April 2008.

[TGPM17] Alexandre Torres, Renata Galante, Marcelo Soares Pimenta, and Alexandre
Jonatan B. Martins. Twenty years of object-relational mapping: A survey on
patterns, solutions, and their implications on application design. Information
& Software Technology, 82:1–18, 2017.

[TK11] Catia Trubiani and Anne Koziolek. Detection and solution of software perfor-
mance antipatterns in palladio architectural models. In ICPE ’11: Proceedings
of the 2nd ACM/SPEC International Conference on Performance engineering,
pages 11–11. Karlsruhe Institute of Technology, ACM, March 2011.

[TME+18] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazina-
nian, and Danny Dig. Accurate and efficient refactoring detection in commit
history. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE ’18, pages 483–494. ACM, 2018.

[VAPM13] A. Vetrò, L. Ardito, G. Procaccianti, and M. Morisio. Definition, implementa-
tion and validation of energy code smells: an exploratory study on an embedded
system, pages 34–39. ThinkMind, 2013.

164 / 168 BIBLIOGRAPHY

[VCD17] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. Recovering
clear, natural identifiers from obfuscated js names. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages 683–693.
ACM, 2017.

[VEM02] E Van Emden and LMoonen. Java quality assurance by detecting code smells.
Ninth Working Conference on Reverse Engineering, pages 97–106, 2002.

[vEM12] E. van Emden and L. Moonen. Assuring software quality by code smell de-
tection. In 2012 19th Working Conference on Reverse Engineering, Oct 2012.

[VMDP14] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. An approach
to prioritize code smells for refactoring. Automated Software Engineering,
23(3):501–532, 2014.

[VRDBDR07] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger. On
The Detection of Test Smells: A Metrics-Based Approach for General Fixture
and Eager Test. IEEE Transactions on Software Engineering, 33(12):800–817,
December 2007.

[VVDP+16] Santiago Vidal, Hernan Vazquez, J Andrés Díaz-Pace, Claudia Marcos,
Alessandro Garcia, and Willian Oizumi. JSpIRIT: A flexible tool for the anal-
ysis of code smells. In Proceedings - International Conference of the Chilean
Computer Science Society, SCCC, pages 1–6. Universidad Nacional del Centro
de la Provincia de Buenos Aires, Tandil, Argentina, IEEE, February 2016.

[Wak03] William C. Wake. Refactoring Workbook. Addison-Wesley Longman Publish-
ing Co., Inc., 1 edition, 2003.

[WFF18] Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme. Code smells
and their collocations: A large-scale experiment on open-source systems.
Journal of Systems and Software, 144:1 – 21, 2018.

[WGM+15] Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke,
and Steve Young. Semantically conditioned lstm-based natural language gen-
eration for spoken dialogue systems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1711–1721, 2015.

[WHTK14] Chunyan Wang, Shoichi Hirasawa, Hiroyuki Takizawa, and Hiroaki
Kobayashi. A Platform-Specific Code Smell Alert System for High Perfor-
mance Computing Applications. In IPDPSW ’14: Proceedings of the 2014 IEEE
International Parallel & Distributed Processing Symposium Workshops, pages
652–661. IEEE Computer Society, May 2014.

[WHZ+16] Yequan Wang, Minlie Huang, Li Zhao, et al. Attention-based lstm for aspect-
level sentiment classification. In Proceedings of the 2016 conference on empir-
ical methods in natural language processing, pages 606–615, 2016.

165 / 168 BIBLIOGRAPHY

[WL17] Huihui Wei and Ming Li. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source
code. In IJCAI, pages 3034–3040, 2017.

[WTVP16] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-
vanyk. Deep learning code fragments for code clone detection. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engi-
neering, pages 87–98. ACM, 2016.

[WVLVP15] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys
Poshyvanyk. Toward deep learning software repositories. In Proceedings of
the 12th Working Conference on Mining Software Repositories, pages 334–345.
IEEE Press, 2015.

[Yam14] Aiko Yamashita. Assessing the capability of code smells to explain mainte-
nance problems: an empirical study combining quantitative and qualitative
data. Empirical Software Engineering, 19(4):1111–1143, 2014.

[YC13] Aiko Yamashita and Steve Counsell. Code smells as system-level indicators
of maintainability: An empirical study. The Journal of System and Software,
86(10):2639–2653, October 2013.

[YM13a] Aiko Yamashita and Leon Moonen. Exploring the impact of inter-smell re-
lations on software maintainability: An empirical study. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, pages
682–691. IEEE Press, 2013.

[YM13b] Aiko Yamashita and Leon Moonen. To what extent can maintenance prob-
lems be predicted by code smell detection? – An empirical study. Information
and Software Technology, 55(12):2223–2242, 2013.

[YN17] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-
purpose code generation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 440–450, 2017.

[YZFW15] Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and Bartosz Wal-
ter. Inter-smell relations in industrial and open source systems: A replication
and comparative analysis. In 2015 IEEE 31st International Conference on Soft-
ware Maintenance and Evolution, ICSME 2015 - Proceedings, pages 121–130.
Høgskolen i Oslo og Akershus, Oslo, Norway, IEEE, November 2015.

[ZHB11] Min Zhang, Tracy Hall, and Nathan Baddoo. Code Bad Smells: A re-
view of current knowledge. Journal of Software Maintenance and Evolution,
23(3):179–202, April 2011.

166 / 168 BIBLIOGRAPHY

[ZSSS11] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. Investi-
gating the impact of design debt on software quality. In MTD ’11: Proceedings
of the 2nd Workshop on Managing Technical Debt, pages 17–23. Fraunhofer
USA, Inc., ACM, May 2011.

List of Publications

Accepted publications based on this thesis
• Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your config-
uration code smell?. In Proceedings of the 13th International Conference on Min-
ing Software Repositories (MSR ’16). ACM, New York, NY, USA, 189-200. https:
//doi.org/10.1145/2901739.2901761

• Tushar Sharma, Diomidis Spinellis. “A survey on software smells”, Journal of Systems
and Software, Volume 138, 2018, Pages 158-173, ISSN 0164-1212, https://doi.
org/10.1016/j.jss.2017.12.034.

• Tushar Sharma, Marios Fragkoulis and Diomidis Spinellis, ”House of Cards: Code
Smells in Open-Source C# Repositories,” 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), Toronto, ON, 2017, pp.
424-429. doi:10.1109/ESEM.2017.57

• Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Diomidis
Spinellis. “Smelly relations: measuring and understanding database schema qual-
ity”, In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP ’18). ACM, New York, NY, USA, 55-64.
https://doi.org/10.1145/3183519.3183529

• Tushar Sharma. 2018. Detecting and managing code smells: research and prac-
tice. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 546-547. https:
//doi.org/10.1145/3183440.3183460

• Tushar Sharma. HowDeep Is theMud: Fathoming Architecture Technical Debt Using
Designite. To appear in International Conference of Technical Debt (TechDebt’19),
Tools track.

Submitted articles based on this thesis
• Tushar Sharma, Paramvir Singh, Diomidis Spinellis, ”An Empirical Investigation on
the Relationship between Design and Architecture Smells” under review in Journal of

167

https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
doi: 10.1109/ESEM.2017.57
https://doi.org/10.1145/3183519.3183529
https://doi.org/10.1145/3183440.3183460
https://doi.org/10.1145/3183440.3183460

168 / 168 BIBLIOGRAPHY

Software and Systems (JSS). Apr 2018.

• Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. On the
Feasibility of Transfer-learning Code Smells using Deep Learning. April 2019. Eprint
available at: https://arxiv.org/abs/1904.03031SSL

Relevant accepted publications not part of the thesis
• Tushar Sharma, Pratibha Mishra and Rohit Tiwari, “Designite - A Software Design
Quality Assessment Tool,” IEEE/ACM 1st International Workshop on Bringing Ar-
chitectural Design Thinking Into Developers’ Daily Activities (BRIDGE), Austin, TX,
2016, pp. 1-4. doi: 10.1109/Bridge.2016.009

• Tushar Sharma, “Designite: A Customizable Tool for Smell Mining in C# Reposito-
ries”, in SATToSE, Madrid, 7-9 June 2017. Online: http://www.tusharma.
in/preprints/designite_SATToSE2017.pdf

• Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. “Refactoring for
software architecture smells”, In Proceedings of the 1st International Workshop on
Software Refactoring (IWoR 2016). ACM, New York, NY, USA, 1-4.
http://dx.doi.org/10.1145/2975945.2975946

Other publications during the thesis period
• Tushar Sharma and Girish Suryanarayana, ”Augur: Incorporating Hidden Depen-
dencies and Variable Granularity in Change Impact Analysis,” 2016 IEEE 16th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
Raleigh, NC, 2016, pp. 73-78. doi: 10.1109/SCAM.2016.32

• Maria Kechagia, Tushar Sharma and Diomidis Spinellis, ”Towards a Context Depen-
dent Java Exceptions Hierarchy,” 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), Buenos Aires, 2017, pp. 347-349. doi:
10.1109/ICSE-C.2017.134

https://arxiv.org/abs/1904.03031
http://www.tusharma.in/preprints/designite_SATToSE2017.pdf
http://www.tusharma.in/preprints/designite_SATToSE2017.pdf
http://dx.doi.org/10.1145/2975945.2975946

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Proposed Solution and Contributions
	1.4 Research method
	1.5 Thesis outline

	2 Related Work
	2.1 Introduction
	2.2 Method
	2.2.1 Research objectives and questions
	2.2.2 Literature search protocol
	2.2.2.1 Literature search – Phase 1
	2.2.2.2 Literature search – Phase 2
	2.2.2.3 Literature search – Phase 3

	2.3 Results and Discussion
	2.3.1 LR-RQ1: What is the definition of a software smell?
	2.3.1.1 LR-RQ1.1: What are the defining characteristics of a software smell?
	2.3.1.2 LR-RQ1.2: What are the types of smells?
	2.3.1.3 LR-RQ1.3: How are the smells classified?
	2.3.1.4 LR-RQ1.4: Are smells and antipatterns considered synonyms?

	2.3.2 LR-RQ2: How do smells get introduced in software systems?
	2.3.3 LR-RQ3: How do smells affect the software development processes, artifacts, or people?
	2.3.4 LR-RQ4: How do smells get detected?
	2.3.4.1 Machine learning techniques on source code

	2.3.5 LR-RQ5: What are the open research questions?

	2.4 Conclusions

	3 Methodology
	3.1 Research Objectives
	3.1.1 Maintainability Analysis for Production Source Code
	3.1.2 Detecting Smells using Deep Learning
	3.1.3 Maintainability Analysis for Configuration Code
	3.1.4 Maintainability Analysis for Database Code

	3.2 Theoretical Background
	3.2.1 Code Smells
	3.2.1.1 Architecture Smells
	3.2.1.2 Design Smells
	3.2.1.3 Implementation Smells

	3.2.2 Exploring Deep Learning-based Solution for Smell Detection
	3.2.2.1 Challenges in Applying Deep Learning on Source Code
	3.2.2.2 Selection of Smells

	3.2.3 Configuration Smells
	3.2.3.1 Implementation Configuration Smells
	3.2.3.2 Design Configuration Smells

	3.2.4 Database Smells

	4 Implementation
	4.1 Analyzing Production Code for Quantitative Maintainability Assessment
	4.1.1 Mining C# Repositories
	4.1.2 Analyzing C# Repositories Using Designite
	4.1.2.1 Architecture
	4.1.2.2 Detection Mechanism for Supported Architecture Smells
	4.1.2.3 Detection Mechanism for Supported Design Smells
	4.1.2.4 Detection Mechanism for Supported Implementation Smells
	4.1.2.5 Evaluation

	4.2 Detecting Smells using Deep Learning
	4.2.1 Data Generation and Curation
	4.2.1.1 Downloading Repositories
	4.2.1.2 Smell Detection
	4.2.1.3 Splitting Code Fragments
	4.2.1.4 Generating Training and Evaluation Data
	4.2.1.5 Tokenizing Learning Data
	4.2.1.6 Data Preparation

	4.2.2 Architecture of Deep Learning Models
	4.2.2.1 cnn Model
	4.2.2.2 rnn Model

	4.2.3 Hardware Specification

	4.3 Analyzing Configuration Code for Quantitative Maintainability Assessment
	4.3.1 Selecting and Downloading Puppet repositories
	4.3.2 Design Configuration Smells — Detection Strategies

	4.4 Analyzing Database Code for Maintainability Assessment
	4.4.1 Mining Repositories
	4.4.1.1 Selecting Industrial Repositories
	4.4.1.2 Selecting Open-source Repositories
	4.4.1.3 Extracting sql Statements
	4.4.1.4 Analyzing and Detecting Smells

	4.4.2 DbDeo and Detection Strategies for Database Smells
	4.4.3 Accuracy of DbDeo
	4.4.3.1 Accuracy of the sql Statements Extraction
	4.4.3.2 Accuracy of Smell Detection

	5 Results and Discussion
	5.1 Results of Maintainability Analysis on Production Code
	5.1.1 P-RQ1. What is the distribution of implementation, design, and architecture smells in C# code?
	5.1.2 P-RQ2. Do the detected smell instances belonging to different granularities correlate?
	5.1.3 P-RQ3. Is the principle of coexistence applicable to smells in C# projects?
	5.1.4 P-RQ4. Does smell density depend on the size of the C# repository?
	5.1.5 P-RQ5. Are architecture smells collocated with design smells?
	5.1.6 P-RQ6. Can the refactoring of design smells lead to fewer architecture smells?
	5.1.7 Discussion and Implications
	5.1.7.1 Discussion
	5.1.7.2 Secondary Uses of this Work

	5.2 Results of Detecting Smells using Deep Learning
	5.2.1 D-RQ1. Is it possible to use deep learning methods to detect code smells? If yes, which deep learning method performs superior?
	5.2.1.1 D-RQ1.H1. It is feasible to detect smells using deep learning methods.
	5.2.1.2 D-RQ1.H2. cnn-2d performs better than cnn-1d in the context of detecting smells.
	5.2.1.3 D-RQ1.H3. rnn model performs better than cnn models in the smell detection context.

	5.2.2 D-RQ2. Is transfer-learning feasible in the context of detecting smells? If yes, which deep learning model exhibits superior performance in detecting smells when applied in transfer-learning setting?
	5.2.2.1 D-RQ2.H1. It is feasible to apply transfer-learning in the context of code smells detection.
	5.2.2.2 D-RQ2.H2. Transfer-learning performs inferior compared to direct learning.

	5.2.3 Discussion
	5.2.3.1 Is there any silver-bullet?
	5.2.3.2 Performance comparison with baseline
	5.2.3.3 Poor performance in detecting a design smell
	5.2.3.4 Trading performance with training-time

	5.3 Results of Maintainability Analysis on Configuration Code
	5.3.1 C-RQ1. What is the distribution of maintainability smells in configuration code?
	5.3.2 C-RQ2. What is the relationship between the occurrence of design configuration smells and implementation configuration smells?
	5.3.3 C-RQ3. Is the principle of coexistence applicable to smells in configuration projects?
	5.3.4 C-RQ4. Does smell density depend on the size of the configuration project?
	5.3.5 Discussion

	5.4 Results of Maintainability Analysis on Database Code
	5.4.1 Developers' Survey on Database Smells
	5.4.2 DB-RQ1. What are the occurrence patterns of database smells?
	5.4.3 DB-RQ2. Does the size of the project or the database play a role in smell density?
	5.4.4 DB-RQ3. Does the nature of code (type of the application, or usage of orm frameworks) affect the smell density?
	5.4.5 DB-RQ4. What is the degree of co-occurrence among database smells?
	5.4.6 Discussion
	5.4.6.1 Qualitative Analysis of the Results

	5.5 Threats to Validity
	5.5.1 Construct Validity
	5.5.2 Internal Validity
	5.5.3 External Validity

	6 Conclusions and Future Work
	6.1 Summary of the Results
	6.2 Contributions of the Thesis
	6.3 Future Work

	Bibliography

