
Lessons from Research to Practice on Writing
Better Quality Puppet Scripts
Akond Rahman

Department of Computer Science
Tennessee Tech University

Cookeville, TN, USA
arahman@tntech.edu

Tushar Sharma
Department of Computer Science

Dalhouise University
Nova Scotia, Canada

tushar@dal.ca

Abstract—Infrastructure as Code (IaC) scripts, such as Pup-
pet scripts, provide practitioners the opportunity to provision
computing infrastructure automatically at scale. Poorly written
IaC scripts impact various facets of quality (such as security
and maintainability) and, in turn, may lead to serious con-
sequences. Many of the ill-effects can be avoided or rectified
easily by following recommendations derived from research
and best practices gleaned from experience. While researchers
have investigated methods to improve quality aspects of Puppet
scripts, such research needs to be summarized and synthesized
for industry practitioners. In this article, we summarize recent
research in the IaC domain by discussing key quality issues,
specifically security and maintainability smells, that may arise
in an IaC script. We also mine open-source repositories from
three organizations (Mozilla, Openstack, and Wikimedia) and
report our observations on the identified smells. Furthermore, we
also synthesize recommendations from the literature for software
practitioners that could improve the quality of IaC scripts.
Software development teams dealing with large computing in-
frastructure can get benefited from the actionable recommended
practices. In addition, researchers in the domain may use this
study to find opportunities to improve the state-of-the-art.

Index Terms—puppet, code smell, infrastructure as code,
devops, quality, empirical study, bugs, security

I. INTRODUCTION

Infrastructure as code (IaC) is the practice automating sys-
tem deployment and specifying system configurations through
code [12], [16]. IaC emphasizes the need of treating config-
uration code similar to production code and thus advocates
adopting good software engineering practices, such as testing,
static analysis, and version control for configuration code.
With the high adoption of IaC tools, such as Puppet, software
development teams today maintain a considerable size of code
written for system deployment and configuration. It highlights
the need to analyze, understand, and maintain the quality of
IaC scripts.

Researchers have investigated various aspects of IaC frame-
works and tools to better understand the needs of practitioners
and improve their artifacts and processes [3]. Specifically, on
the quality side, researchers investigated defect categories [10],
[15], [18], [19], semantics and code properties [8], [14], and
maintainability [3], [6], [15], [16] of configuration code.
However, often, software engineering research and practice
exhibit a disconnect, which hinders practitioners to benefit

from the state-of-the-art research efforts conducted by the re-
search community [1], [2]. Research in the IaC field also suffer
from this limitation, and therefore, needs to be systematically
summarized and disseminated. Such summarization can be
helpful for (i) practitioners, who can learn from the findings
to improve the quality of IaC scripts, and (ii) researchers,
who can get a concise overview of the state-of-the-art research
related to IaC to further build new methods and techniques.

To that end, in this paper, we summarize the findings from
recent literature on the quality of IaC scripts and synthesize
recommendations for software practitioners. In the next sec-
tions, we first describe the employed methodology and then
explored a few research questions based on the goal of our
study, explained in consecutive sections.

II. METHODOLOGY

The goal of this paper is to summarize and synthesize
Puppet-related research for practitioners so that they can
leverage the benefits from the state-of-the-art to improve the
quality of their IaC scripts. Towards that goal, we conduct a
literature review of publications that discuss quality aspects
for Puppet scripts. We structure our paper addressing the
following three research questions.

• RQ1. What quality issues can arise in Puppet scripts?
• RQ2. How frequently do quality issues occur in Puppet

scripts?
• RQ3. What activities practitioners may adopt to mitigate

quality concerns in Puppet scripts?

A. Literature search

We use three databases to identify publications that are
related to Puppet quality: Google Scholar, IEEE Xplore, and
the ACM Digital Library. We use the search string ‘quality
of Puppet scripts’. In the case of each scholar database, we
collect the first 250 search results sorted based on relevance,
as determined by all the searched digital libraries. We apply
the following inclusion criteria.

• The publication must discuss Puppet-related research in
the context of IaC. This allows us to filter irrelevant
results, such as publications that focus on puppets used
for entertainment;

Preprin
t



• The publication was published on or after 2010. We use
this year as Puppet was first released in the year of 2009;

• The publication is not a duplicate of another; and
• The publication discusses quality aspects of Puppet-

related development.
We also adopted exclusion criteria where we excluded all

articles that were extended abstract or not in English. Our
process yielded 13 publications. Table I shows a breakdown
of selected publications w.r.t. each inclusion criteria. Datasets
used in our paper is available online [13].

TABLE I
FILTERING OF PUBLICATIONS

Criterion Count

Initial results (from three databases) 750

Criterion-1 (Puppet research) 33
Criterion-2 (After 2010) 33
Criterion-3 (Non-duplicate) 23
Criterion-4 (Quality) 13
Final 13

III. WHAT QUALITY ISSUES CAN ARISE IN PUPPET
SCRIPTS?

Similar to production source code, IaC scripts are also
prone to issues impacting quality attributes such as security,
reliability, and maintainability. Researchers [10], [15], [18],
[19] have carried out a detailed exploration about quality issues
in IaC scripts. In the remaining section, we elaborate on the
key academic explorations associated with IaC script quality.

A. Security smells

Security smells in IaC scripts are recurring code patterns
that are indicative of security weaknesses [12]. For example,
hard-coded password is a security smell in Puppet scripts.
In addition to this, Rahman et al. [12] identified six other
categories of security smells in Puppet code. We provide the
names and definitions of each category in Table II. Experi-
enced practitioners having knowledge in security domain can
detect these security smells in IaC scripts through manual
inspection. Practitioners may also use static analysis tools,
such as SLIC [9] for the purpose.

In addition, Guerriero et al. [3] surveyed practitioners on
bad practices related to IaC development concerning Puppet
script quality. They also reported hard-coded values to be a
bad practice while developing IaC scripts. Furthermore, they
observed idempotency and documentation to cause issues in
IaC development that were also identified bug categories for
IaC. Kumara et al. [6] conducted a grey literature review and
identified practices that are detrimental to IaC development.
They reported hard-coded configuration values and not using
secret management tools as bad practices.

B. Maintainability smells

Similar to traditional software engineering where code
smells are classified based on their granularity as well as

scope [17], Sharma et al. [16] classified configuration smells
as implementation and design configuration smells. Implemen-
tation configuration smells are quality issues such as naming
convention, style, formatting, and indentation in IaC scripts.
Design configuration smells reveal quality issues in the module
design or structure of a configuration project. Table III and
IV respectively list implementation and design configuration
smells respectively along with their brief description.

In addition, Guerriero et al. [3] identified creating too large
scripts as a bad practice in their survey of practitioners.
Kumara et al. [6] reported violation of naming conventions
and insufficient modularization to be the bad practices for IaC
development. Furthermore, Rehearsal [15] detects three types
of issues in IaC scripts including modularity.

C. Configuration drift and inconsistencies

Configuration drift occurs when a code snippet goes out-of-
date because the APIs that it depends on, experience breaking
changes over time [5]. Weiss et al. [20] proposed Tortoise—a
bug repair tool that detects and repairs configuration inconsis-
tencies in Puppet scripts. Tortoise collects a Puppet manifest
and user-provided shell commands, and detects inconsistencies
between the user-provided commands and the buggy Puppet
manifests. Next, Tortoise uses Z3, a constraint solver to
generate patches that can resolve the detected configuration
inconsistencies. Practitioners can find Tortoise handy to detect
and resolve configuration drift in Puppet scripts.

Puppet uses configurations specified in manifests and com-
pares that with configurations of the system. This process
is referred to as convergence. Hannapi et al. [4] used a
state transition graph-based approach to detect non-convergent
Puppet scripts. The proposed technique can be employed in
practice to ensure that the developed manifests are convergent.

D. Bugs and faults

Sotiropoulos et al. [18] proposed a technique to detect
dependency-related faults among different types of Puppet
resources (such as a service is not tied to its resources). They
analyze Puppet scripts and corresponding system call traces
and construct a representation containing all the ordering con-
straints and notifications declared in the program to identify
dependency mismatches and potential faults. Bent et al. [19]
conducted an empirical study to identify source code elements
of a Puppet script that can cause bugs. Similarly, Shambaugh
et al. [15] proposed a tool Rehearsal to find three types of
bugs in Puppet scripts: idempotence and non-determinism.
Practitioners may find these techniques and tools helpful to
locate faults that may occur in their IaC scripts.

IV. HOW FREQUENTLY DO QUALITY ISSUES OCCUR IN
PUPPET SCRIPTS?

To answer this question, we mine open-source repositories
that contain Puppet code to measure the frequency of quality
issues concerning security and maintainability. The collected
repositories were systematically filtered using a selection cri-
teria that included the count of practitioners who developed

Preprin
t



TABLE II
BRIEF DESCRIPTION OF DETECTED INSTANCES OF SECURITY SMELLS IN COLLECTED PUPPET SCRIPTS

Security smells Description #Instances

Admin by default Recurring pattern of specifying default users as administrative users. 45
Empty password Recurring pattern of using a string of length zero for a password. An empty password is indicative of

a weak password.
75

Hard-coded secret Recurring pattern of revealing sensitive information such as user name and passwords as configurations
in Puppet scripts.

6,060

Invalid IP address binding Recurring pattern of assigning the address 0.0.0.0 for a database server or a cloud service/instance. 175
Suspicious comment Recurring pattern of putting information in comments about the presence of defects, missing function-

ality, or weakness of the system.
850

Use of HTTP without TLS Recurring pattern of using HTTP without the Transport Layer Security (TLS). 681
Use of weak crypto algo-
rithm

Recurring pattern of using weak cryptography algorithms, such as MD5 and SHA-1 for encryption
purposes.

94

TABLE III
BRIEF DESCRIPTION OF DETECTED INSTANCES OF IMPLEMENTATION CONFIGURATION SMELLS IN COLLECTED PUPPET SCRIPTS

Configuration smell Description #Instances

Missing Default Case A default case is missing in a case or selector statement 179
Inconsistent Naming Convention Deviates from the recommended naming convention 4
Complex Expression Contains a difficult to understand complex expression 105
Duplicate Entity Duplicate hash keys or duplicate parameters 0
Misplaced Attribute Attribute placement within a resource has not followed a recommended order 67
Improper Alignment Improper code alignment such as all the arrows in a resource declaration 1,953
Invalid Property Value An invalid value of a property or attribute is used 51
Incomplete Tasks The code has “FIXME” and “TODO” tags 459
Deprecated Statement Usage Deprecated statements (such as “import”) are used 219
Improper Quote Usage Single and double quotes are not used properly 644
Long Statement The code contains long statements 0
Incomplete Conditional An “if..elsif” construct used without a terminating “else” clause 182
Unguarded Variable A variable is not enclosed in braces when being interpolated in a string 158

TABLE IV
BRIEF DESCRIPTION OF DETECTED INSTANCES OF DESIGN CONFIGURATION SMELLS IN COLLECTED PUPPET SCRIPTS

Configuration smell Description #Instances

Multifaceted Abstraction Elements of the abstraction (e.g. a resource, class, ‘define’, or module) are not cohesive 3,767
Unnecessary Abstraction An empty class, ‘define’, or module 299
Imperative Abstraction An abstraction contains numerous imperative statements (such as “exec”) 99
Missing Abstraction Resources and language elements are declared without encapsulating them in an abstraction 127
Insufficient Modularization An abstraction is large or complex 4,699
Duplicate Block A module contains a duplicate block of statements 807
Broken Hierarchy Inheritance is used across namespaces where inheritance is not natural 0
Unstructured Module Ad-hoc structure of a repository 3
Dense Structure A repository has excessive and dense dependencies without any particular structure 1
Deficient Encapsulation A node definition or ENC (External Node Classifier) declares a set of global variables 100
Weakened Modularity A module exhibits high coupling and low cohesion 232

Puppet code, amount of Puppet scripts in a repository, and
amount of commits pushed per month. We collect these
repositories from three organizations, Mozilla, Openstack, and
Wikimedia. We provide attributes of the collected repositories
in Table V. We used SLIC [12] and Puppeteer [16] to detect
and quantify respectively security and configuration smells.

The Instances column of Table II shows the count of
detected occurrences for each of the security smells. We found
that hard-coded secret is the most frequent occurring security
smell in the analyzed projects. The identified instances reveal
sensitive information, such as SSH keys, usernames, and pass-
words. For example, while analyzing an open-source software
repository we found a hard-coded password v23zj59an,
which was used to login to a database. Revealing such infor-

TABLE V
SUMMARY OF THE DATASET

Attribute Mozilla Openstack Wikimedia

Total Repositories 2 61 10
Total Commits 14,449 44,469 71,795
Total Puppet Scripts 1,596 2,845 3,143
Total Puppet-related
Commits

6,836 12,227 21,066

Time Period 05/2011-
04/2019

09/2011-
04/2019

01/2006-
04/2019

mation may pose serious security threats to the organization.
The second and third most frequent security smells are

suspicious comment and use of HTTP without TLS. Though
practitioners intend to use TODO and FIXME to put aspects that

Preprin
t



they would like to address later, existence of these comments
for a sensitive piece of code can provide clues to malicious
users to exploit weaknesses. Usage of HTTP without TLS
can facilitate ‘man in the middle’ attacks. The least frequent
category is admin by default, where user accounts are setup by
providing all administrative privileges to a user. Our findings
reveal that certain security weaknesses, despite being well-
known, occur frequently in Puppet scripts.

Similarly, the ‘Instances’ column in Table III and Table IV
show the number of detected instances for the implementation
and design maintainability smells. Among implementation
maintainability smells, improper alignment occurs the most. A
large number of misaligned statements impact the readability,
and in turn, understandability of the programs. Two of the
smells—duplicate entity and long statement are not detected
at all. From the design perspective, our data suggests that the
insufficient modularization smell occurs the most indicating
that the practitioners put too many resources and their cor-
responding configuration statements within a single class or
module. A related smell is multifaceted abstraction that high-
lights absence of cohesiveness for Puppet abstractions. A high
number of multifaceted abstraction instances can be linked
to insufficient modularization smell. It can be inferred that
these abstractions are hosting unrelated resource configuration
declarations leading to large abstractions. On the other hand,
we did not detect any instance of broken hierarchy smell and
only one instance of dense structure smell. Dense structure
smell is detected at most once per repository and hence, though
a small number, is not a surprise.

V. WHAT ACTIVITIES PRACTITIONERS MAY ADOPT TO
MITIGATE QUALITY CONCERNS IN PUPPET SCRIPTS?

Recent research [8], [11], [14], [16] has investigated what
aspects of IaC scripts and its development are correlated with
defective IaC scripts. Rahman el al. [14] identified source
code properties that correlate with defects. The study explored
defect-related commits along with code changes (commonly
referred to as ‘diffs’) to identify ten source code properties of
Puppet scripts. Another study by Rahman et al. [8] identified
operations correlating with defects.

To investigate what development activity metrics relate with
defective scripts, Rahman et al. [11] conducted quantitative
analysis with 2, 138 Puppet scripts collected from 94 open-
source repositories. The authors then mine seven develop-
ment activity metrics; each of these seven metrics maps
to a development activity. Sharma et al. [16] proposed a
consolidated catalog of 11 design configuration smells and
13 implementation configuration smells. They carried out a
detailed empirical assessment of 4, 621 Puppet repositories to
observe the characteristics of maintainability smells.

Based on the above-mentioned efforts and their findings,
we glean the following observations and recommendations for
practitioners to mitigate defects in IaC scripts.
• Inspect code properties: Among many code properties

supported by configuration frameworks, we advocate prac-
titioners to prioritize inspection and testing efforts for ten

code properties (i.e., attribute, command, ensure, file, file
mode, hard-coded string, include, lines of code, require,
SSH KEY, complexity, parameter, exec, and lint warnings)
[14]. Focusing on these properties can help development
teams to reduce the likelihood of defects since these prop-
erties are correlated with defects in IaC scripts.

• Identify and remove security smells: We recommend
detailed assessment and inspection for seven categories of
security smells. These smells are listed in Table II with
names and corresponding definitions.

• Identify and remove maintainability smells: Keeping the
source code maintainable is an important aspect to ensure
long-term productivity. Findings from Sharma et al. [16]
suggest to identify maintainability smells in Puppet code
and take appropriate action to refactor them. Table III and
IV list the maintainability smells for IaC scripts.

• Inspect defect-prone operations: We advocate practitioners
to prioritize inspection efforts for scripts that perform any of
the below listed operations. These operations have tendency
to be correlated with defects and hence a close examination
of code performing these operations could help mitigate
defects.
– File system operations: File system operations are related

to performing file input and output tasks, such as setting
permissions of files and directories. While assigning file
permissions practitioners can provide the wrong file per-
missions, e.g. assigning 777 instead of 444. Assigning
unrestricted access with 777 can provide unnecessary
access to users who do not need such access and is a
violation of good access control policies.

– Infrastructure provisioning for speciality systems: This
property relates to setting up and managing infrastructure
for specialty systems, such as build systems, data analyt-
ics systems, database systems, and web server systems.
Puppet [7] advertise automated provisioning of infrastruc-
ture as one of the major capabilities of IaC tools, but
experiments indicate that the capability of provisioning
via Puppet scripts can introduce defects.

– Managing user accounts: This property of defective IaC
scripts is associated with setting up accounts and user cre-
dentials. One of the major tasks of system administrators
is to setup and manage user accounts in systems.

• Avoid development anti-patterns: Development anti-
patterns are recurring development activities that show cor-
relation with defective scripts [11]. We recommend practi-
tioners to look for and avoid the following anti-patterns.
– Boss is not around: The highest contributor usually have

the full context of the script, which other practitioners
may not have. If a relatively new member of the team
contribute more than the highest contributor, the corre-
sponding script have higher chances to be defective. On
an average, the highest contributor develops 80%∼90%
of the code for non-defective scripts.

– Many cooks spoil: Having multiple practitioners working
on the same script increases the defect proneness of

Preprin
t



the scripts. Studies [11] reveal that defective scripts are
modified by 12∼43 practitioners, whereas, non-defective
scripts modified by no more than 11 practitioners.

– Minors are spoilers: This anti-pattern states that a script
being modified by minor contributors, i.e., practitioner(s)
who writes no more than 5% code of the script, makes
the script prone to defects. It has been found that a non-
defective script may be modified by at most 7 minor
contributors, whereas, defective scripts can be modified
by 8∼36 minor contributors [11].

– Silos: This anti-pattern arises when the practitioners work
in disjoint groups. It has been reported that the defective
scripts are modified by practitioner groups, which are
1.3∼2.0 times more disjoint, on average, compared to
that of non-defective scripts [11].

– Unfocused contribution: The anti-pattern occurs when
a practitioner working on an IaC script also modifies
other scripts. On an average, unfocused contribution for
defective scripts accounts to up to 95% higher than non-
defective scripts [11].

VI. CHALLENGES AND OPPORTUNITIES

Despite advances in the domain of IaC script quality, there
exists research gaps that need to be filled to address challenges
faced by practitioners:
• Lack of assessment and automated refactoring tools: Tra-

ditional software engineering enjoy the benefits of the
availability of comprehensive tool support for detecting
various quality issues and, to some extent, refactor them
automatically. However, currently, IaC domain lacks similar
extensive tool support, which makes the task of developing
good quality IaC scripts challenging.

• Poor actionability and integration: Ad-hoc static analysis
tools for various kinds of defects can at most scratch the
surface of the real issues. It is necessary that the devel-
oped tools are integrated with development environments to
highlight the issues earlier. In addition, a tighter integration
reduces the efforts from the development side to explicitly
carry out assessments for code quality.

VII. CONCLUSION

In continuous deployment, IT organizations rapidly deploy
software and services to end-users using an automated deploy-
ment pipeline. IaC is a fundamental pillar to implement an
automated deployment pipeline. Defective IaC scripts, such
as defective Puppet scripts can hinder the reliability of the
automated deployment pipeline. By mining Puppet scripts
from the OSS domain we have synthesized a set of lessons that
will help practitioners to improve the quality of Puppet scripts.
In particular, we list security and maintainability smells that
may occur in configuration code. We used existing tools to
measure the frequency of those smells in Puppet repositories
of three well-known open-source organizations. Finally, we
discuss challenges and opportunities in the domain of IaC for
both the industry and academic communities.

ACKNOWLEDGEMENTS

We thank the PASER group at Tennessee Technological
University (TnTech) for their valuable feedback. This research
was partially funded by the U.S. National Science Foundation
(NSF) Award # 2026869.

REFERENCES

[1] V. Basili, L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sa-
betzadeh, “Software engineering research and industry: a symbiotic
relationship to foster impact,” IEEE Software, vol. 35, no. 5, pp. 44–49,
2018.

[2] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The
case for context-driven software engineering research: Generalizability
is overrated,” IEEE Software, vol. 34, no. 5, pp. 72–75, 2017.

[3] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption,
support, and challenges of infrastructure-as-code: Insights from indus-
try,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 580–589.

[4] O. Hanappi, W. Hummer, and S. Dustdar, “Asserting reliable conver-
gence for configuration management scripts,” SIGPLAN Not., vol. 51,
no. 10, pp. 328–343, Oct. 2016.

[5] E. Horton and C. Parnin, “V2: Fast detection of configuration drift
in python,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 477–488.

[6] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba,
D. A. Tamburri, and W.-J. van den Heuvel, “The do’s and don’ts of
infrastructure code: A systematic gray literature review,” Information
and Software Technology, vol. 137, p. 106593, 2021.

[7] Puppet, “Continuous delivery,” https://puppet.com/products/capabilities/
automated-provisioning, 2021, [Online; accessed 14-Nov-2021].

[8] A. Rahman and L. Williams, “Characterizing defective configuration
scripts used for continuous deployment,” in 2018 IEEE 11th Inter-
national Conference on Software Testing, Verification and Validation
(ICST), April 2018, pp. 34–45.

[9] A. Rahman, “Security Linter for Infrastructure as Code Scripts (SLIC),”
05 2019. [Online]. Available: https://github.com/akondrahman/IacSec

[10] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of eight: A
defect taxonomy for infrastructure as code scripts,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ser.
ICSE ’20. Association for Computing Machinery, 2020, p. 752–764.

[11] A. Rahman, E. Farhana, and L. Williams, “The ‘as code’ activities:
Development anti-patterns for infrastructure as code,” Empirical Softw.
Engg., no. 25, 2020.

[12] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in Proceedings of the 41st International
Conference on Software Engineering, ser. ICSE ’19, 2019, pp. 164–175.

[13] A. Rahman, M. Rahman, C. Parnin, and L. Williams, “Dataset for
Security Smells for Ansible and Chef Scripts Used in DevOps,” 7
2019. [Online]. Available: https://figshare.com/s/9f6f1c5bfa6cca9b9214

[14] A. Rahman and L. Williams, “Source code properties of defective
infrastructure as code scripts,” Information and Software Technology,
2019.

[15] R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: A configuration
verification tool for puppet,” SIGPLAN Not., vol. 51, no. 6, pp. 416–
430, Jun. 2016.

[16] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16, 2016, pp. 189–200.

[17] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[18] T. Sotiropoulos, D. Mitropoulos, and D. Spinellis, “Practical fault detec-
tion in puppet programs,” in Proc. of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, p. 26–37.

[19] E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your
puppet? an empirically defined and validated quality model for puppet,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), March 2018, pp. 164–174.

[20] A. Weiss, A. Guha, and Y. Brun, “Tortoise: Interactive system config-
uration repair,” in Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017, 2017,
pp. 625–636.

Preprin
t

https://puppet.com/products/capabilities/automated-provisioning
https://puppet.com/products/capabilities/automated-provisioning
https://github.com/akondrahman/IacSec
https://figshare.com/s/9f6f1c5bfa6cca9b9214

	Introduction
	Methodology
	Literature search

	What quality issues can arise in Puppet scripts?
	Security smells
	Maintainability smells
	Configuration drift and inconsistencies
	Bugs and faults

	How frequently do quality issues occur in Puppet scripts?
	What activities practitioners may adopt to mitigate quality concerns in Puppet scripts?
	Challenges and Opportunities
	Conclusion
	References



