
QScored: A Large Dataset of Code Smells and
Quality Metrics

Tushar Sharma
Siemens Technology

Charlotte, USA
tusharsharma@ieee.org

Marouane Kessentini
University of Michigan

MI, USA
marouane@umich.edu

Abstract—Code quality aspects such as code smells and code
quality metrics are widely used in exploratory and empirical
software engineering research. In such studies, researchers spend
a substantial amount of time and effort to not only select the
appropriate subject systems but also to analyze them to collect
the required code quality information. In this paper, we present
QScored dataset; the dataset contains code quality information
of more than 86 thousand C# and Java GitHub repositories
containing more than 1.1 billion lines of code. The code quality
information contains seven kinds of detected architecture smells,
20 kinds of design smells, eleven kinds of implementation smells,
and 27 commonly used code quality metrics computed at project,
package, class, and method levels. Availability of the dataset
will facilitate empirical studies involving code quality aspects by
making the information readily available for a large number of
active GitHub repositories.

Index Terms—Code quality, code smells, quality metrics, main-
tainability, technical debt.

I. INTRODUCTION

Maintainability is an important aspect of software quality.
A well-maintained software system is relatively easy to ex-
tend and correct [1]. The software engineering community
considers code smells [1], [2] and code quality metrics [3]
as the common mechanisms to identify issues that impact
maintainability of a software system. The community has
carried out extensive explorations proposing various ways to
detect code smells as well as to investigate their causes and
impacts [4].

Repository mining studies nowadays heavily depend on the
source code repositories that are available on code repository
hosting platform such as GitHub. The abundance of open-
source repositories, on the one hand, offers opportunities to
researchers to carry out mining studies on a relatively large
scale; on the other hand, poses a challenge to select a subset of
them, especially based on code quality. Software engineering
researchers often require a set of high-quality repositories to
carry out their empirical experiments. Most of the times, they
select repositories based on their size, popularity (e.g., number
of stars), or activity (i.e., the number of commits) as the
options to choose repositories based on their quality is not
available. Though there have been some attempts, for instance
RepoReapers [5] and PHANTOM [6], to address the gap,
these attempts do not consider detailed code quality measures
for their repository evaluation. In addition, many empirical

studies investigate relationship of code quality aspects with
other software artifact or process aspects (for example, bugs
prediction [7]–[10] and maintainability prediction [11]–[13]).
Furthermore, once they select the repositories, the code quality
information such as code smells and metrics are not readily
available; they have to choose an appropriate tool, and run the
tool on the selected subject systems to collect the required code
quality information. For a large number of repositories, the
activity demands computing resources as well as researchers’
time and effort.

In this paper, we present QScored dataset to address the
issues outlined above. The dataset offers the following infor-
mation for 86, 652 repositories written mainly in Java and C#
having more than 1.1 billion lines of code from GitHub.

• The dataset contains a comprehensive set of detected code
smells (seven kinds of architecture, 20 design, and eleven
implementation smells) for each repository.

• It consists of ten project-level (such as smell density and
code duplication), two package-level (lines of code and
smell density), 12 class-level (such as lack of cohesion of
methods and lines of code), and three method-level (such
as cyclomatic complexity) commonly used code quality
metrics.

• Historical trend of relative ranking of the repositories
based on their code quality.

II. DATASET CONSTRUCTION

Figure 1 presents the architectural overview of construction
method adopted for this dataset. QScored agent (or client)
implements repository selector, repository downloader, repos-
itory analyzer, and report uploader. QScored server imple-
ments a set of REST APIs [14] to enable clients to interact
with the server in addition to components that realize code
analysis report validation and quality score computation. We
elaborate the individual steps below.

A. Repository selector

We adopt a selection criterion to choose a subset of GitHub
repositories. We select repositories written either in Java
or C# programming languages. Also, we only select active
repositories, i.e., repositories that are modified at least once in
the last one year. We implement a GraphQL script to specify



Periodic rank 
computation

Database

uses

uses

Repositories

Repository 
selector

Analyzer

Downloader

Analysis 
reports

Uploader Validator

QScored agent QScored server

uses

Designite

GitHub

Fig. 1. Overview of the dataset construction method

the criterion and document the identified repositories in a CSV
file.

B. Repository downloader

This module gets the list of repositories to download from
the repository selector module and downloads the repositories.

C. Repository analyzer

The analyzer module takes one downloaded repository at a
time and analyzes it using Designite [15] (for C# repositories)
or DesigniteJava [16] (for Java repositories). These tools pro-
vide a detailed code analysis report. Each such report contains
detected architecture, design, and implementation smells as
well as commonly used code quality metrics. Designite detects
seven kinds of architecture, 20 kinds of design, and eleven
types of implementation smells. Sharma et al. [17] provide a
detailed description of smells as well as the tool validation for
Designite.

D. Report uploader

The report uploader module checks the size of the analyzed
repository in the generated code analysis report. If the size
of the repository is less than 1,000 lines of code, the module
discard the repository to avoid populating the dataset with toy
programs; otherwise, the module uploads the analyzed report
to the QScored server along with metadata of the analysis
(such as project name and URL of the repository). QScored
provides a secure upload API by using API key that can be
obtained for free from the QScored platform.

E. Report validator

QScored defines a portable XML schema to include detailed
code quality information so that the visualization can be made
tool and language independent. The schema can be accessed
online.1 Each code analysis report must confirm to this XML
schema. Each incoming code analysis report is checked by the
report validator module to ensure that the report adheres to the
schema. Once the code analysis report passes the validation,

1https://qscored.com/docs/extend scope/

the module parses the report and store the information in a
PostgreSQL database.

F. Database

Figure 2 presents the schema of the QScored database. Each
analysis report creates a record in solution table. Each
solution, in turn, may have multiple projects (especially for C#
repositories). Code smell and metric records for each source
code entity are stored in corresponding tables. Quality score
and rank information is stored in rank_score table. Table
I presents key size metrics of the database.

Source code entity/smell Java C#
#Repositories 55,284 31,368
LOC 758,940,537 385,127,027
#Components 1,389,672 914,830
#Classes 10,039,117 4,208,243
#Methods 73,972,917 16,072,342
#Architecture smells 855,793 341,697
#Design smells 8,405,248 4,178,885
#Implementation smells 45,777,230 28,597,401

TABLE I
KEY SIZE METRICS FOR THE DATASET

G. Quality score and rank computation

For each repository in its corpus, QScored computes a
quality score based on the detected architecture, design, and
implementation smells. Furthermore, a quality rank is com-
puted periodically (weekly) based on the quality score. A
lower value of quality score is desired and hence project with
the smallest quality score is assigned the highest quality rank.
We encourage the reader to refer to our previous work [14]
that provides more details about computing quality score and
ranking.

III. AVAILABILITY AND USAGE

This section outlines different ways by in which the database
can be explored and used. We also provide examples to help
the reader better understand the database.



Fig. 2. Schema of the QScored database

A. Availability of dataset

1) Database dump: The database dump is made available
publicly to download [18]. Size of the archived (in tar format)
database is approximately 38 GB.

2) Dataset exploration using search APIs: Apart from the
entire database dump, we offer an alternative way to explore
the dataset in the form of QScored search APIs. The first
search API search_project_by_quality allows users
to search repositories based on their quality ranking in the
dataset. The API allows users to specify filters language and
LOC range to obtain a list of repositories that satisfy the
criteria in the sorted order of their quality ranking. Another API
search_project returns the metadata about the searched
projects. The API takes project name and repository link
as inputs. Both of the search APIs returns a list of project
metadata containing project name and unique id, repository
link, LOC, programming language, as well as quality rank
and score. We provide examples of the above-mentioned APIs
online.2

3) Dataset search using QScored platform: The dataset can
also be explored via a web interface provided by the QScored
platform.3 The interface provides options to search the dataset
based on repository name, programming language, size of the
repository (in LOC), and quality score as well as quality rank.

2https://www.qscored.com/docs/api
3https://qscored.com/ranking/

B. Analysis scripts

The scripts to select repositories using GraphQL, to down-
load them from GitHub, to analyze them using Designite
and DesigniteJava, and to upload the code analysis reports
to QScored server has been made available publicly [19].

C. Examples

The following SQL script provides a list of Java repository
ranked in top 10 repositories in the dataset based on the latest
ranking.

1 SELECT distinct designite_project.name
2 FROM designite_project, rank_score
3 WHERE designite_project.id =
4 rank_score.designite_project_id AND
5 rank_score.rank<=10 AND
6 prog_language =’java’ AND
7 rank_score.ranked_date = (
8 SELECT MAX(rank_core.ranked_date)
9 FROM rank_score)

Similarly, the following example explores the difference in
quality score of the repositories over time. The script emits five
records; it shows that there are five repositories for which the
minimum quality score is less than 2 and the maximum score
is greater than 10 since the creation of the dataset. It must be
noted that the dataset also contains total 13, 613 versions of
the dataset repositories; these versions are added periodically
only for those repositories that have been changed since the



last analysis. The result highlights the evolution of the quality
profile of these five repositories.

1 SELECT count(id), designite_project_id
2 FROM rank_score
3 GROUP BY designite_project_id
4 HAVING MAX(score)>10 AND MIN(score)<2

D. Privacy concerns

As we elaborate in our previous work [14], anybody can
use the platform to upload their code analysis reports. The
platform allows the users to mark a project private. To avoid
privacy concerns, we remove projects uploaded by all the users
apart from the authors of this paper and provide a cleaned
dataset for public use. Similarly, we removed all usernames,
email addresses, and API keys to honor the users’ privacy.

IV. IMPACT AND POTENTIAL RESEARCH DIRECTIONS

Code smells are used extensively to carry out a wide
range of exploratory and empirical studies. It includes the
effect of code smells on bug prediction [7], on maintainability
prediction [11], on maintenance effort [12], and on merge
conflicts [20]. Similarly, code quality metrics are used widely
for bug prediction [8]–[10], and maintainability prediction
[4], [13]. To carry out such experiments, researchers spent
a substantial amount of time and effort to not only select
the appropriate subject systems but also analyze them to
collect the required information. This dataset offers help to
the software engineering researchers by reducing their effort in
collecting code quality information. Specifically, we envision
that the presented dataset could be relevant and useful in
following applications.

A. Bug prediction

Software engineering researchers may utilize the offered
dataset in software quality prediction studies including bug
prediction and change prediction.

B. Machine learning for software engineering applications

With the emerging interest in machine learning techniques
for software engineering applications, the information present
in the dataset can help researchers to utilize the dataset for
training machine learning models; for instance, quality metrics
can be used as the features for code smell detection.

C. Correlating code quality with effort and productivity

The dataset can be used to establish a correlation between
code quality and productivity of a software development team.
Along the similar lines, the data can also be used to assess the
effect of quality on other aspects of software development such
as team churn. In this context, trend analysis of quality rank
evolution of the analyzed repositories can also be investigated
with other aspects or artifacts of software development.

V. RELATED WORK

Though code repository hosting platforms such as GitHub
host a huge number of repositories, a large subset of them
are either too small, inactive, or of poor quality [21]. The
software engineering community has proposed a few mech-
anisms to separate them from the high-quality active repos-
itories. GHTorrent [22] provides a method to query GitHub
projects, obtain metadata, and select projects based on custom
criteria. RepoRepears [5] analyzed a large number of GitHub
repositories and evaluated them based on eight dimensions (ar-
chitecture, community, continuous integration, documentation,
history, issues, license, and unit testing). PHANTOM [6] applies
k-means algorithm on five factors extracted from git history
to classify a large number repositories in a resource-efficient
manner. Markovtsev et al. [23] create a public git archive
containing more than 182 thousand repositories and provide
mechanism to obtain metadata of the repositories. However,
none of these studies collect code quality information and treat
code quality as one of the primary criterion to filter out or rank
the source code repositories.

There has been some efforts to create code quality datasets.
COMETS [24] consists of time-series data of 17 object-oriented
metrics of ten open-source projects. Palomba et al. [25] offers a
dataset of 243 manually validated instances of five code smells
extracted from 20 open-source repositories. Lenarduzzi et al.
[26] presents a technical debt dataset created from 33 Java
open-source projects where they collect technical debt of each
commit from SonarQube and detect code smells using Ptidej.
Similarly, Diamantopoulos et al. [27] propose a dataset of
3, 000 most popular open-source Java repositories containing
DevOps metrics and coding violations detected by using PMD.
The proposed dataset QScored is not only significantly large
compared to the above mentioned datasets but also contains a
rich set of code quality information.

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

The presented dataset covers repositories written only in
Java and C#. This limitation can be addressed by utilizing
code quality analysis tools for other programming languages;
however, an extensive tool support to detect architecture and
design smells for other languages is lacking presently.

Code quality information has been extensively used by the
software engineering research community. We present a large
dataset containing comprehensive code quality information
for more than 86 thousand active repositories from GitHub.
The dataset will further foster the software repository mining
research involving code quality aspects by readily providing
the required code quality information.

In the future, we would like to extend the dataset with all
active Java or C# repositories on GitHub. Towards this, we
have plan to create an automated pipeline subscribed to GitHub
to fetch a project, analyze it, and upload it automatically. We
also plan to extend the quality analysis to other aspects of
code quality such as test quality by analyzing test smells and
making it a part of the dataset.



REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[2] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[3] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[4] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 – 173, 2018.

[5] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[6] P. Pickerill, H. Joshua Jungen, M. Ochodek, M. Maćkowiak, and
M. Staron, “PHANTOM: Curating GitHub for engineered software
projects using time-series clustering,” Empirical Software Engineering,
May 2020.

[7] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto,
“Smells like teen spirit: Improving bug prediction performance using
the intensity of code smells,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2016, pp. 244–255.

[8] J. Ferzund, S. N. Ahsan, and F. Wotawa, “Analysing bug prediction
capabilities of static code metrics in open source software,” in Software
Process and Product Measurement, R. R. Dumke, R. Braungarten,
G. Büren, A. Abran, and J. J. Cuadrado-Gallego, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 331–343.

[9] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), 2010, pp. 31–41.

[10] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level
bug prediction,” in Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 2012,
pp. 171–180.

[11] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 306–315.

[12] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2013.

[13] H. Alsolai and M. Roper, “A systematic literature review of machine
learning techniques for software maintainability prediction,” Information
and Software Technology, vol. 119, p. 106214, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584919302228

[14] V. Thakur, M. Kessentini, and T. Sharma, “QScored: An Open Platform
for Code Quality Ranking and Visualization,” in 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2020, pp. 818–821.

[15] T. Sharma, “ Designite - A Software Design Quality Assessment Tool,”
May 2016, available online at http://www.designite-tools.com. [Online].
Available: https://doi.org/10.5281/zenodo.2566832

[16] ——, “Designitejava (enterprise),” Sep. 2019, available online at
http://www.designite-tools.com/designitejava. [Online]. Available: https:
//doi.org/10.5281/zenodo.3401802

[17] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on the
relationship between design and architecture smells,” Empirical Software
Engineering (EMSE), vol. 25, pp. 4020–4068, 2020.

[18] T. Sharma, “QScored: A Large Dataset of Code Smells and Quality
Metrics,” Jan. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.
4468361

[19] ——, “Qscored agent,” Feb. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.4568414

[20] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code smells
and merge conflicts,” in 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2017, pp.
58–67.

[21] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
Oct 2016.

[22] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. IEEE Press, 2013, pp. 233–236.

[23] V. Markovtsev and W. Long, “Public git archive: A big code dataset
for all,” in Proceedings of the 15th International Conference on
Mining Software Repositories, ser. MSR ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 34–37. [Online].
Available: https://doi.org/10.1145/3196398.3196464

[24] C. Couto, C. Maffort, R. Garcia, and M. T. Valente, “Comets: A
dataset for empirical research on software evolution using source
code metrics and time series analysis,” SIGSOFT Softw. Eng.
Notes, vol. 38, no. 1, p. 1–3, Jan. 2013. [Online]. Available:
https://doi.org/10.1145/2413038.2413047

[25] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells
with public evaluation,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, 2015, pp. 482–485.

[26] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “The technical debt dataset,”
in Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering, ser. PROMISE’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
2–11. [Online]. Available: https://doi.org/10.1145/3345629.3345630

[27] T. Diamantopoulos, M. D. Papamichail, T. Karanikiotis, K. C.
Chatzidimitriou, and A. L. Symeonidis, “Employing contribution and
quality metrics for quantifying the software development process,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, ser. MSR ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 558–562. [Online]. Available:
https://doi.org/10.1145/3379597.3387490


