
Designite: A Customizable Tool

for Smell Mining in C# Repositories

Tushar Sharma

Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
tushar@aueb.gr

Abstract

Code smells indicate the presence of quality
issues in a software system. For a thorough
large scale smell mining study, researchers re-
quire tools that not only allow them to de-
tect a wide range of smells in a large num-
ber of repositories automatically but also offer
mechanisms to customize the analysis. In this
paper, we present a tool Designite that de-
tects 19 design and 11 implementation smells
for source code written in C# programming
language. Designite provides a command line
tool, in addition to an interactive user inter-
face, to support automation required for a
large scale mining study. Furthermore, the
tool allows customization of quality analy-
sis parameters, such as metric thresholds, to
serve a wider range of users.

1 Introduction

Code smells [Fow99, SSS14] indicate the presence of
quality issues in a software system. A high number
of smells in a software system makes the system dif-
ficult to maintain and evolve. Therefore, identifying
smells in code and refactor them help us improve and
maintain the quality of the software.

In the last two decades, many smell detection tools
have been developed to aid researchers and practition-
ers. These tools use various detection techniques such
as metrics [Mar05, VMDP14, FM13, SLT06], machine-
learning algorithms [KVGS09, MKMD16, CMC15,

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

MAB+12], historical information [PBDP+15], and
rules/heuristics [MGDM10, PDMG14]. For a quan-
titative analysis, researchers require tools that allow
them to detect smells in a large number of repositories
automatically. Although some of the available tools
enable researchers to mine smells, we perceive the fol-
lowing gaps in the present set of smell detection tools
from smell mining perspective.

• The present set of tools detects only a subset
of known smells. God class (or blob), shotgun
surgery, feature envy, refused bequest, and long
method (or god method) smells are the most com-
mon smells detected by the present set of tools.
Measuring and determining code quality based on
only a handful of smells raises a serious threat to
validity of the code quality measurements.

• The target programming language of the subject
systems is Java for almost all of the academic
tools. The lack of tools that support other pro-
gramming languages makes it difficult to conceive
a mining study that targets subject systems be-
longing to other programming languages.

• Smell detection methods depend on many pa-
rameters that influence the outcome of an anal-
ysis. These parameters include thresholds used
to detect specific smells and the way source code
projects are included or excluded for source code
analysis. The present set of tools lacks the sup-
port to customize the parameters of an analysis.

We present a tool Designite [SMT16, Sha17] that we
developed to overcome the above-mentioned shortcom-
ings. We explain briefly the functionality and features
offered by the tool in the next section.

1



2 Smell Detection using Designite

In this section, we first briefly present architecture of
the tool. We then elaborate on the features of De-
signite that are useful in the context of smell mining.
Further, we list other key features of the tool.

2.1 Architecture of the tool

Figure 1 shows the major components of the tool. De-
signite uses NRefactory [NRe16] to parse C# code
and prepares Abstract Syntax Tree (ast). The source
model layer accesses the ast and prepares a simple
hierarchical meta-model. The meta-model contains
objects of projects containing information about an-
alyzed projects. Each object of an analyzed project
contains the objects of namespaces implemented in the
project. Similarly, each object of a namespace contains
objects of types that are part of the namespace and so
on. The meta-model captures the required source code
information which is used by the back-end of Designite
to infer smells and compute metrics.

NRefactory

Source	Model

Designite	Back-end

Designite	
Front-end

Designite	
Console

Designite	Plug-in	
(SonarQube)

Figure 1: Architecture of the tool

2.2 Smell mining using Designite

Designite is a software design quality assessment tool.
The tool supports identification of 30 code smells (19
design smells [SSS14] and 11 implementation smells
[Fow99]). Table 1 and table 2 list all the supported
design [SSS14] and implementation smells [Fow99] re-
spectively with a brief description.

Designite analyzes source code written in C#.
Users can initiate an analysis using a user interface
and observe results of the analysis in a visually pleas-
ing yet easy to understand manner. Apart from the
user interface, Designite also provides a console appli-
cation which is particularly useful for analyzing a large
number of repositories automatically.

Customization is one of the key features of the tool.
A user can customize an analysis within Designite in
numerous ways:

• A user can specify the projects to analyze using
Designite console application in following ways.

– A user can initiate source code analysis by
specifying the path of a C# solution along
with other required parameters.

– A C# solution may have multiple projects.
A user can include or exclude specific
projects for the analysis in an input batch
file. Excluding specific projects from an
analysis is very useful in certain situations;
for instance, a user can exclude all test
projects (containing “test” in the project
name) just by specifying “test” against a spe-
cific configuration setting in the input batch
file.

– The tool can also analyze a git repository.
Furthermore, a user can provide specific ver-
sions (by specifying commit hashes) to be
analyzed while performing smell trend anal-
ysis. Alternatively, a user can specify a total
number of versions to be analyzed from the
git history. The tool selects specified num-
ber of versions by choosing a version after
each m commits starting from the first com-
mit. Here, m is defined by the total number
of versions in the repository divided by the
required number of versions to be analyzed.

• Similarly, the tool allows users to change the anal-
ysis parameters. Specifically, users can choose
which of the supported smells they wish to de-
tect using the tool. Figure 2 shows the preference
window to customize parameters of an analysis;
for the console application, the same effect can be
achieved by modifying a configuration file. Addi-
tionally, users can change metric thresholds that
are used to detect smells.

• The format of the produced output can also be
specified. Currently, the tool supports csv, Mi-
crosoft Excel, and xml formats.

2.3 Other features

We list other key features of the tool below:

• The tool detects 30 object-oriented metrics ap-
plicable to different source code entities (i.e.,
project, namespace, class, and method).

• The tool can analyze multiple versions of a soft-
ware and perform trend analysis of smells. As
shown in figure 3, trend analysis reveals how many
smells got introduced, refactored, or remained in
a version from the previous version.

2



Table 1: Supported Design Smells with Their Brief Description
Design smell Brief description
Imperative Abstraction an operation is turned into a class
Unnecessary Abstraction an abstraction that is actually not needed
Multifaceted Abstraction an abstraction has more than one responsibility assigned to it
Unutilized Abstraction an abstraction is left unused
Duplicate Abstraction two or more abstractions have identical names or identical implementation
Deficient Encapsulation the declared accessibility of one or more members of an abstraction is more

permissive than actually required
Unexploited Encapsulation client code uses explicit type checks
Broken Modularization data and/or methods that ideally should have been localized into a single

abstraction are separated and spread across multiple abstractions
Insufficient Modularization an abstraction exists that has not been completely decomposed, and a

further decomposition could reduce its size, or implementation complexity
Hub-like Modularization an abstraction has high incoming and outgoing dependencies
Cyclically-dependent two or more abstractions depend on each other directly or indirectly
Modularization
Wide Hierarchy an inheritance hierarchy is “too” wide
Deep Hierarchy an inheritance hierarchy is “excessively” deep
Multipath Hierarchy a subtype inherits both directly as well as indirectly from a supertype
Cyclic Hierarchy a supertype in a hierarchy depends on any of its subtypes
Rebellious Hierarchy a subtype rejects the methods provided by its supertype(s)
Unfactored Hierarchy there is unnecessary duplication among types in a hierarchy
Missing Hierarchy a code segment uses conditional logic to explicitly manage variation in behaviour
Broken Hierarchy a supertype and its subtype conceptually do not share an “is-a” relationship

Table 2: Supported Implementation Smells with Their Brief Distribution
Implementation smell Brief description
Long Method a method is excessively long
Complex Method a method with high cyclomatic complexity
Long Parameter List a method has long parameter list
Long Identifier an identifier with excessive length
Long Statement an excessive long statement
Complex Conditional a complex conditional statement
Virtual Method Call from Constructor a constructor calls a virtual method
Empty Catch Block a catch block of an exception is empty
Magic Number an unexplained number is used in an expression
Duplicate Code a code clone within a method
Missing Default a switch statement does not contain a default case

• Visualization is one of the vital strengths of the
tool. The tool presents detected smells using a
sunburst diagram. As shown in figure 4, a sun-
burst representation not only presents the de-
tected smells in a visually appealing manner but
also allows user to navigate and filter the detected
smells interactively.

Additionally, users can visualize the distribution
of smells in a software system using treemap. As
shown in figure 5, a smell treemap shows the
hotspots of the system which could be chosen for
refactoring.

Further, a pie-chart of the metrics could help a
user to holistically visualize the state (green, yel-

low, orange, or red) of the code from a specific
metrics point of view.

• The tool can be used to observe and ana-
lyze dependencies between types, namespaces,
and projects using Dependency Structure Matrix
(dsm).

• For refactoring prioritization, the tool computes
hotspots (i.e., classes with high number of smells).

• The tool also detects code clones.

A free fully-featured academic license of the tool could
be acquired for all academic purposes.

3



Figure 2: Preferences Window for Customizing a
Source Code Analysis

Figure 3: Trend Analysis of Smells

3 Conclusions

In this paper, we revealed a need of a tool for software
engineering researchers to perform large scale smell
mining studies. It is desired from a smell detection tool
to support detection of a wide range of code smells and
allow customization of the analysis. We present Desig-
nite that detects 19 design smells and 11 implementa-
tion smells in C# code. The tool offers mechanisms
to customize the analysis based on the context and
the requirements. We hope that the research commu-
nity will exploit the features of the tool for their smell
mining studies.

In the future, we would like to add support of ar-
chitecture smells in the tool. Also, we plan to create
an ide plug-in of the tool for Microsoft Visual Studio.

References

[CMC15] Gabriela Czibula, Zsuzsanna Marian, and
Istvan Gergely Czibula. Detecting soft-
ware design defects using relational asso-
ciation rule mining. Knowledge and In-

Figure 4: Sunburst Representation of Smells for Effec-
tive Navigation and Filtering

Figure 5: Visualizing Distribution of Smells Using
Treemap

formation Systems, 42(3):545–577, March
2015.

[FM13] Amin Milani Fard and Ali Mesbah. JS-
NOSE: Detecting javascript code smells.
In IEEE 13th International Working
Conference on Source Code Analysis and
Manipulation, SCAM 2013, pages 116–
125. The University of British Columbia,
Vancouver, Canada, IEEE, January 2013.

[Fow99] Martin Fowler. Refactoring: Improv-
ing the Design of Existing Programs.
Addison-Wesley Professional, 1 edition,
1999.

[KVGS09] Foutse Khomh, Stéphane Vaucher, Yann-
Gaël Guéhéneuc, and Houari Sahraoui.
A Bayesian Approach for the Detection
of Code and Design Smells. In QSIC
’09: Proceedings of the 2009 Ninth Inter-
national Conference on Quality Software,
pages 305–314. IEEE Computer Society,
August 2009.

4



[MAB+12] Abdou Maiga, Nasir Ali, Neelesh Bhat-
tacharya, Aminata Sabané, Yann-Gaël
Guéhéneuc, Giuliano Antoniol, and Esma
Aı̈meur. Support vector machines for
anti-pattern detection. In ASE 2012:
Proceedings of the 27th IEEE/ACM In-
ternational Conference on Automated
Software Engineering, pages 278–281.
Polytechnic School of Montreal, ACM,
September 2012.

[Mar05] R Marinescu. Measurement and quality
in object-oriented design. In 21st IEEE
International Conference on Software
Maintenance (ICSM’05), pages 701–704.
Universitatea Politehnica din Timisoara,
Timisoara, Romania, IEEE, December
2005.

[MGDM10] Naouel Moha, Yann-Gaël Guéhéneuc,
Laurence Duchien, and Anne-
Françoise Le Meur. DECOR: A method
for the specification and detection of
code and design smells. IEEE Trans.
Software Eng., 36(1):20–36, 2010.

[MKMD16] Usman Mansoor, Marouane Kessentini,
Bruce R Maxim, and Kalyanmoy Deb.
Multi-objective code-smells detection us-
ing good and bad design examples. Soft-
ware Quality Journal, pages 1–24, Febru-
ary 2016.

[NRe16] NRefactory. https://github.com/

icsharpcode/NRefactory, 2016. [On-
line; accessed 16-May-2017].

[PBDP+15] Fabio Palomba, Gabriele Bavota, Massi-
miliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. Min-
ing version histories for detecting code
smells. IEEE Transactions on Software
Engineering, 41(5):462–489, May 2015.

[PDMG14] Francis Palma, Johann Dubois, Naouel
Moha, and Yann-Gaël Guéhéneuc.

Detection of REST patterns and antipat-
terns: A heuristics-based approach. In
Xavier Franch, Aditya K Ghose, Grace A
Lewis, and Sami Bhiri, editors, Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinfor-
matics), pages 230–244. Springer Berlin
Heidelberg, January 2014.

[Sha17] Tushar Sharma. Designite - A Soft-
ware Design Quality Assessment Tool.
http://www.designite-tools.com,
2017. [Online; accessed 16-May-2017].

[SLT06] Mazeiar Salehie, Shimin Li, and Ladan
Tahvildari. A Metric-Based Heuristic
Framework to Detect Object-Oriented
Design Flaws. In ICPC ’06: Pro-
ceedings of the 14th IEEE International
Conference on Program Comprehension
(ICPC’06), pages 159–168. University of
Waterloo, IEEE Computer Society, June
2006.

[SMT16] Tushar Sharma, Pratibha Mishra, and
Rohit Tiwari. Designite — A Soft-
ware Design Quality Assessment Tool.
In Proceedings of the First International
Workshop on Bringing Architecture De-
sign Thinking into Developers’ Daily Ac-
tivities, BRIDGE ’16. ACM, 2016.

[SSS14] Girish Suryanarayana, Ganesh
Samarthyam, and Tushar Sharma.
Refactoring for Software Design Smells:
Managing Technical Debt. Morgan
Kaufmann, 1 edition, 2014.

[VMDP14] Santiago A Vidal, Claudia Marcos, and
J Andrés Dı́az-Pace. An approach to pri-
oritize code smells for refactoring. Au-
tomated Software Engineering, 23(3):501–
532, 2014.

5


