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ABSTRACT
Context: Databases are an integral element of enterprise applica-
tions. Similarly to code, database schemas are also prone to smells
— best practice violations.
Objective: We aim to explore database schema quality, associated
characteristics and their relationships with other software artifacts.
Method: We present a catalog of 13 database schema smells and
elicit developers’ perspective through a survey. We extract em-
bedded sql statements and identify database schema smells by
employing the DbDeo tool which we developed. We analyze 2925
production-quality systems (357 industrial and 2568well-engineered
open-source projects) and empirically study quality characteristics
of their database schemas. In total, we analyze 629 million lines of
code containing more than 393 thousand sql statements.
Results: We find that the index abuse smell occurs most frequently
in database code, that the use of an orm framework doesn’t im-
mune the application from database smells, and that some database
smells, such as adjacency list, are more prone to occur in indus-
trial projects compared to open-source projects. Our co-occurrence
analysis shows that whenever the clone table smell in industrial
projects and the values in attribute definition smell in open-source
projects get spotted, it is very likely to find other database smells
in the project.
Conclusion: The awareness and knowledge of database smells are
crucial for developing high-quality software systems and can be
enhanced by the adoption of better tools helping developers to
identify database smells early.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware maintenance tools;
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1 INTRODUCTION
Databases are an integral element of enterprise applications. The
effective use of database affects vital quality parameters, such as
performance and maintainability, of these applications.

Code smells [10, 28, 30] indicate the presence of quality prob-
lems in a software system. The smell metaphor has been extended
to other similar domains such as configuration management [26],
spreadsheets [13], and presentations [25]. Typically, the use of a
database in a software system manifests itself as a series of ddl
(Data Definition Language — e.g. create table) or dml (Data Ma-
nipulation Language — e.g. select) sql statements. Similar to code,
these sql statements can also indicate smells. Bill Karwin [14] docu-
ments a catalog of database anti-patterns. However, their presence
in software systems and their relationships with other software
artifacts have not been explored yet.

In this context, we present our study on mining database smells
in production-quality systems including both the industrial as well
as the open-source software. We analyze sql statements to measure
schema quality of relational databases with a focus on performance
and maintainability quality attributes. Specifically, we explore oc-
currence patterns of database schema smells and figure out the
degree of co-occurrence among schema smells. We also study the
factors that affect the density of database smells. These factors are
the size of the project and database and the nature of code.

To study these aspects, we compiled a catalog of 13 database
schema smells. We carried out a developers survey to understand
software developers’ perspective on these schema smells. We de-
veloped a tool viz. DbDeo to extract embedded sql statements from
host source code (in which the sql statements are embedded) and to
identify cataloged database smells. We analyzed 357 industrial and
2568 open-source projects containing sql statements and provide
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empirical answers to each of the posed research questions. Some
key observations from the study are listed below.
• In our developers survey, the responses emphasize that the
awareness and knowledge of database smells is crucial for
software developers to develop high quality software. Fur-
ther, the survey reveals the subjectivity involved in the data-
base smell detection and interpretation.
• The smell index abuse is the most frequently occurring data-
base smell in both industrial and open-source projects. A
high number of index abuse smell instances indicate the need
of an effective index management in database systems for
higher performance and maintainability.
• Some database smells, such as adjacency list, are more prone
to occur in industrial projects compared to open-source
projects by a significant margin.
• The size of the host application has no impact on density of
database smells; however, smell density shows positive cor-
relation with the size of the database. Application type (i.e.,
Mobile, Desktop, or Web) doesn’t have a significant impact
on database smell density.
• Use of an orm framework doesn’t prevent database smells.

Studying database code quality can help us understand the usage
characteristics of database code. The study offers contributions to
both research and practice. For researchers, it provides a method
to investigate code quality of embedded sql statements by min-
ing repositories. The method also outlines the challenges involved
(such as extracting embedded sql statements). At the same time,
practitioners can learn the potential quality issues that may arise
in their database schema to avoid them. Furthermore, practitioners
can identify database schema smells using the open-source tool
developed in this study. Finally, our results pinpoint areas where im-
provements in database apis, tool support, and training can increase
the quality of database schemas.

2 RESEARCH OBJECTIVE
The goal of this study is to understand database code quality by
mining database schema smells and explore their relationship with
other software artifacts. The chosen subject systems are a wide
variety of industrial as well as open-source software systems. We
keep the focus of the study on performance and maintainability
quality attributes of relational database code.

Characteristics of smells, such as frequency (or the occurrence
pattern) of smells [1, 13, 17], provide dimensions of prioritization
and refactoring. Similarly, relationships of smells with domains,
frameworks, and other application characteristics [9, 17], help us
understand the interplay of smells with application characteristics.
In the context of database programming, orm (Object-Relational
Mapping) frameworks simplify database access by providing an
abstraction. However, it is not understood whether the usage of an
orm framework in an application will lead us to fewer number of
smells. Further, studying co-occurrence of database schema smells
will complement the existing studies exploring properties of co-
occurrence among smells [19, 26].With this background, we explore
the following research questions.

RQ1. What are the occurrence patterns of database smells? We
examine the distribution of database smells to find out whether

there exists a set of database smells that occurs more frequently in
general than another set of database smells.

RQ2. Does the size of the project or the database play a role in
smell density? Smell density [26] is a normalized metric defined
as average number of smells occurred per a fixed number of lines
(say, a thousand lines) of code in a project. We investigate the
relationship of the size of the project (both the total lines of code as
well as total number of create table statements) and smell density.

RQ3. Does the nature of code (type of the application, or usage
of orm frameworks) affect the smell density? The usage of an orm
framework makes it easier to work with a database. We explore
whether the usage of orm frameworks and the type of the applica-
tion influence database smell density.

RQ4.What is the degree of co-occurrence among database smells?
Patterns and smells tend to occur together [3, 30]. We examine the
degree of co-occurrence among database smells to find out a set of
database smells that is likely to occur when a database smell gets
detected.

We present a catalog of database schema smells as a theoretical
model to study the above stated research questions. We attempt
to understand developers’ perspective on database schema smells
through an online survey. We developed a tool viz. DbDeo to detect
9 smells belonging to the presented catalog. We extracted sql state-
ments from 2925 repositories, analyzed them with our tool, and
documented our quantitative and qualitative observations.

3 DATABASE SMELLS
We define database smells as follows:

Database smells are the characteristics of database code (either ddl
or dml sql statements), database system, or stored data that indicate
violation of the recommended best practices and potentially affect the
quality of the software system in a negative way.

We categorize database smells in three categories to understand
them better.

Schema smells: Smells that arise due to poor schema design
are classified as database schema smells. Smells presented in this
section such as compound attribute, index abuse, and god table are
examples of database schema smells.

Query smells: Smells arising from poorly written sql queries
are specified as database query smells.Misused null [14] (when null
is used as an ordinary value in sql queries) and non-grouped column
reference [14] (when a query references at least one non-grouped
column in the presence of group by clause) are examples of database
query smells.

Data smells: Data smells arise from poor data handling in
databases. Intermingled data types (where numbers and alphabets
are intermingled leading to confusion and subtle bugs; for instance,
using ‘O’ instead of ‘0’ in 7O34) is an example of data smells.

In this paper, we focus only on database schema smells.

3.1 A Catalog of Database Schema Smells
We carried out a comprehensive exploration of resources that dis-
cuss best practices as well as common database smells or antipat-
terns. We studied wide variety of resources including books [14],
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research literature [4, 8, 23], industrial white-paper [24], and dis-
cussions on question-answer sites [7]. We summarize the result of
our exploration in the form of a catalog of database schema smells.

CA: Compound attribute This smell arises when a column is
used to store a non-atomic attribute. For instance, storing comma-
separated lists for an attribute to avoid creating an intersection
table for a many-to-many relationship [14, 24] or storing a json
file which is not used atomically [7].
Rationale: Each attribute value must be stored and retrieved atomi-
cally. If a table does not adhere to this practice, the resultant schema
introduces multiple problems. For instance, a user has to write more
complex queries (using pattern-matching expressions) to retrieve
data from this table. Such complex queries are prone to inaccu-
rate results. Also, such queries cannot exploit available indexes.
Even further, these queries are not portable due to vendor specific
support to pattern-matching expressions.

AL: Adjacency list The smell occurs when an attribute in a table
refers another row in the same table i.e., a table has a recursive
relationship to model hierarchical structure [14, 24].
Rationale: Querying a tree with adjacency list is quite difficult
and error-prone. Specifically, deleting a node from a tree which is
modelled using adjacency list is non-trivial and prone to introduce
errors in the database.

SK: Superfluous key This smell arises when an unnecessary
superfluous pseudo key is defined in a table where other attribute(s)
in the table may serve as a primary key [14].
Rationale: Choosing an appropriate primary key is an essential
requirement for a table. A pseudo key could be defined when the
present set of attributes could not serve as a primary key. However,
a pseudo key is unnecessary and even erroneous (leads to duplicate
rows) when the existing set of attributes of the table could be used
as a primary key.

MC: Missing constraints This smell arises when constraints
for a foreign key are missing from a schema definition [14, 24].
Rationale: Referential integrity is an essential property of rela-
tional databases. Values referenced in a foreign key column must
exist in the columns of primary or unique keys of the parent table.
It can be easily achieved by defining constraints on foreign keys.
However, when such constraints are missing for a foreign key it
leads to compromized referential integrity of the database.

MD: Metadata as data This smell occurs when metadata is
stored as data in the form of eav (Entity-Attribute-Value) pat-
tern [14, 24].
Rationale: In a relational table, all the attributes are equally ap-
plicable for all the rows in the table. It is tempting to implement
eav pattern when a subset of attributes applicable for a subset of
rows and the rest of attributes for rest of the rows. However, this
arrangement introduces many deficiencies in the database; for ex-
ample, one can’t use native sql data types (leading to invalid data),
enforce referential integrity, or make up attribute names.

PA: Polymorphic association This smell occurs when a table
uses a multi-purpose foreign key [14, 24].
Rationale: Relational database schema does not allow us to declare
polymorphic association. However, many times developers define
an additional column in a table as a tag to realize a polymorphic
association. This arrangement makes it difficult to query the table
and compromises readability and understandability.

MA: Multicolumn attribute This smell arises when multiple
serial columns are created for an attribute [7, 14].
Rationale: In cases when an attribute may have one ormore values,
it is tempting to create multiple columns for the attribute in a table.
However, such a schema design makes querying the table very
difficult and verbose.

CT: Clone tables This smell occurs when a table is split hori-
zontally in multiple tables using some criterion (for example, year)
to achieve scalability [14].
Rationale: This smell not only makes the querying difficult but
also introduces problems managing data integrity.

VA: Values in attribute definition This smell arises when spe-
cific values are defined in an attribute definition to restrict possible
values of the attribute [14].
Rationale: Specifying all possible values for an attribute in schema
definition mixes metadata with data which is not recommended.
This smell makes it difficult to extend or modify the list of accepted
values for an attribute.

IA: Index abuse This smell arises when the indexes are used
poorly [14, 24]. This smell has the following variants: 1) Missing
indexes 2) Insufficient indexes (indexes must be prepared at least
for primary and foreign keys), and 3) Unused indexes
Rationale: Creating effective indexes is not trivial; it requires judi-
cious planning. A database with a deficient plan for indexes per-
forms poorly.

GT: God table This smell arises when a table contains excessive
number of attributes [7, 24].
Rationale: Excessive number of attributes tend to violate the prin-
ciples of normalization which in turn introduce a variety of prob-
lems. Additionally, it impacts maintainability of the database.

MN: Meaningless name This smell occurs when a table or an
attribute name is cryptic or meaningless [7].
Rationale: Meaningless or cryptic names hamper readability of
the database’s schema.

OA: Overloaded attribute names This smell occurs when two
or more attributes are defined with identical names but as distinct
data types in different tables [24].
Rationale: Identical names with different data types create confu-
sion and could lead to subtle bugs in queries.

4 DEVELOPERS’ SURVEY ON DATABASE
SMELLS

We carried out an online survey targeting software developers
to understand their perspective about the significance of various
database schema smells. We divided the survey in three sections.
In the first section, we collected information about participants’
experience. In the second section, we asked the participants to
read the description of each potential smell presented (total 13
questions based on the catalog presented in Section 3.1) and to
rate each of them based on their importance (i.e., the degree of
smell’s association with software quality issues), and usefulness (i.e.,
the degree of accuracy of the smell in predicting software quality
issues). All the questions in this section were Likert scale questions.
We asked the respondents whether they consider the presented
practice as a database schema smell, a recommended practice, both
a smell and a recommended practice depending on the context,
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or neither a smell nor a recommended practice. The third section
presented a couple of open-ended questions to get participants’
view on the presented catalog and missing database schema smells.
The questionnaire that we used is available online.1

We ran a pilot for the survey, collected the feedback, and im-
proved the survey. We shared the survey to all online social media
channels and sought participation from the developer community.
We received 52 complete responses with completion rate 38%.
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Figure 1: Experience of respondents in terms of number of
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Figure 2: Respondents’ perspective of considered database
smells

Most of the respondents belong to experienced developer groups.
Figure 1 shows the distribution of respondents’ experience in terms
of number of years and number of database applications they have
developed. We summarize our findings from the survey below.

A largemajority of 88% agrees (42% strongly agree and 46% agree)
that the awareness and knowledge of database smells is crucial for
software developers to develop high quality applications. None of
the respondents marked disagree or strongly disagree options.

Figure 2 shows a consolidated perspective provided by the re-
spondents for section 2 questions. Based on the responses we infer
that some practices, such as meaningless name (83%) and missing
constraints (77%), are clearly marked as database smells. However,

1https://github.com/tushartushar/dbSmellsData

we found that practices such as values in attribute definition and
adjacency list are more context-sensitive.

The respondents had the option to add their views either in terms
of smells that we have not included but they have seen in practice
as well as their feeling, objection, or reservation on the presented
smells. A few respondents underline the subjectivity involved in
database smells detection. For instance, one respondent said that
“. . . database smells in general depend much more on an assessment
of the need and end use of data. . . ”. Similarly, another respondent
shared an instance of duplicating values in a table (which is a smell)
to avoid querying 60 tables to load a single record. Yet another
respondent provided his/her opinion on index abuse smell: “. . . the
proper use of indexes is dependent on many things and without regular
profiling it’s not possible to decide whether indexes are actually being
misused.”

As a conclusion of our survey, developers seem to acknowledge
the need for detecting database smells. However, their systematic
identification remains an open problem. This points to the need for
a tool that automatically detects the database smells. Developers
may then, considering the context of the smell, decide whether
the detected smells are indeed quality issues or serving a required
purpose.

5 QUANTITATIVE ANALYSIS
In this section, we discuss our method to select and mine reposito-
ries as well as the detection strategies that we employed in DbDeo.

5.1 Mining Repositories
We used the following protocol to select the subject systems. We
also illustrate the mechanism that we employed in extracting sql
statements and detecting smells.

Selecting Industrial Repositories We approached two orga-
nizations sig (Software Improvement Group) and silo (Singular
Logic) and sought access to their (or their clients’) projects to ana-
lyze them.We analyzed a total of 840 projects that belong to various
domains including banking, crm, and telecom.

Selecting Open-source Repositories We employed RepoRe-
aper [22] to select subject systems for the study. RepoReaper pro-
vides assessment about GitHub open-source repositories on ten
dimensions (architecture quality, community, continuous integra-
tion, documentation, history, license, management, state (active
or dormant), unit tests, and number of stars). We selected all the
16,057 repositories that score greater than zero or true for nine
or ten dimensions. We downloaded these repositories one by one,
looked for sql statements in each repository, and discarded the
repositories that didn’t have any sql statements.

Extracting sql Statements We used regular expressions to
extract sql statements from the acquired repositories in DbDeo. We
implement a two-step process to extract sql statements. In the first
step, we used relaxed regular expressions optimized for speed and
in the second step we used stringent regular expression optimized
for correctness.

Analyzing and Detecting Smells We found 357 industrial
projects and 2568 open-source projects that contained sql state-
ments. Then, we computed metrics such as the number of select,
create table, and insert statements as well as the number of files

https://github.com/tushartushar/dbSmellsData
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belonging to each programming language and corresponding total
lines of code. Finally, we analyzed all the sql statements from all
the repositories using our tool DbDeo to detect database schema
smells. The raw data generated by the tool can be accessed online.2

Table 1 shows some characteristics of the analyzed repositories.
On average, industrial projects are 3.87 times bigger than open-
source projects by loc (average loc for industrial and open-source
projects are 617, 617 and 159, 328 respectively) and 5.05 times bigger
by number of sql statements (average number of sql statements
for industrial and open-source projects are 455 and 90 respectively).
Although, create table statements are the major source of infor-
mation to detect schema smells, many times other sql statements
are required to detect these smells. For example, we require create
table, create index, and select statements in a repository to
detect index abuse smell. Therefore, we extracted select, insert,
update, and create index statements also in addition to create
table statements. We analyzed 393,989 sql statements from 2925
repositories (on average ≈ 135 sql statements per repository).

Table 1: Characteristics of the analyzed industrial (I) as well
as open-source (OSS) repositories

Attributes I OSS
Initial set of repositories 840 16,057
Repositories with sql statements 357 2,568
Files 2,559,984 3,297,932
Lines of code (source code only) 220,489,273 409,155,497
select statements 51,652 74,096
create table statements 18,907 50,682
insert statements 74,416 66,830
update statements 10,454 29,002
create index statements 7,152 10,798

5.2 DbDeo and Detection Strategies for
Database Smells

We developed DbDeo — an open-source database smell detection
tool3. The tool has a meta-model generator component that uses the
third-party library SQLParse4 to parse sql statements and prepare a
meta-model. The meta-model component defines abstractions such
as CreateTableStmt and TableColumn and organizes them in a hier-
archical structure. For instance, a CreateTableStmt object contains a
list of TableColumn objects. These abstractions contain information
about the parsed sql statements. For example, one of the attributes
belonging to CreateTableStmt is totalColumnsInTable. The smell
detection module in turn uses the meta-model to detect database
schema smells.

In the rest of section, we discuss detection strategies employed
by DbDeo to detect database smells.

Compound attribute: We look for pattern-matching expres-
sions in an sql query. In a select statement, we check the presence
of regex in a where clause. We inquire whether a comma is used
to separate values that are inserted against an attribute using an

2https://github.com/tushartushar/dbSmellsData
3https://github.com/tushartushar/DbDeo
4https://github.com/andialbrecht/sqlparse

insert statement. For update statements, we check the use of a
comma in set clause.

Adjacency list: We look for a foreign key constraint referring
to an attribute in the same table.

Metadata as data: We look for a schema definition containing
only three attributes. We detect the smell if we find two of the
attributes, among three, of type varchar.

Multicolumn attribute: We check the schema for a pattern
‘<attribute>’N where N is a number. We detect this smell in the
table, if the schema has more than one attribute that matches with
the above pattern.

Clone tables: We check all the schema definitions within a data-
base for a pattern ‘<Table name>’N where N is a number. We
conclude that a database has this smell when the database has two
or more tables matching with the above pattern.

Values in attribute definition: We detect the smell by check-
ing the schema for “enum” or “check” where the construct imposes
a restriction on the possible values that can be entered for an at-
tribute.

Index abuse: Missing indexes —We identify this variant of the
smell when there exists at least one table and the number of indexes
in the database are zero.
Insufficient indexes — commonly available database vendors support
creating indexes for primary keys implicitly. We look for missing
indexes for foreign keys to detect this smell variant.
Unused indexes — We identify this variant when the indexed at-
tributes don’t appear in any query.

God table: We count the total number of attributes defined in a
schema definition. The table suffers from this smell if the number
of attributes defined in the table crosses a threshold (currently we
use 10 attributes as a threshold).

Overloaded attribute names: We scan all the attributes and
their properties in schema definitions. If we find two or more at-
tributes that have an identical name but defined as different data
types, we report this smell.

We also considered detecting the remaining four smells automat-
ically. However, we found it technically challenging to detect them
automatically with high accuracy. For instance, superfluous key can
be detected automatically if we have both the database schema and
the data. However, devising heuristics without looking into data is
prone to high false-positives.

6 RESULTS
In this section, we discuss the results observed from the analysis
on the gathered data with respect to each research question posed.

RQ1. What are the occurrence patterns of database smells?

Approach: We use DbDeo to detect 9 types of database schema
smells in the 357 industrial and 2568 open-source repositories. We
collate all the detected instances of smells by their type and we
compute average smell density for each type of smell.

Results: Table 2 summarizes the detected instances of database
schema smells and corresponding average occurrences per reposi-
tory in all the analyzed repositories.

We make the following observations from the collected data in
the context of this question.

https://github.com/tushartushar/dbSmellsData
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Table 2: Occurrence pattern of database schema smells for
industry (I) as well as open-source (OSS) repositories

Smells Occurrences Avg. smell density
I OSS I OSS

CA 5,517 7,966 0.04 0.04
AL 733 297 0.15 0.02
GT 4,428 5,507 0.44 0.24
VA 85 326 0.00 0.02
MD 944 1,003 0.16 0.09
MA 1,624 3,137 0.10 0.07
CT 101 3,704 0.00 0.05
OA 1814 7,300 0.20 0.21
IA 12,643 9,475 1.25 1.76

We find that index abuse is the most frequently occurring smell
in both industrial as well as open-source projects. However, it is
interesting to note that although the number of instances of index
abuse smell are higher in industrial projects, they occur relatively
less frequently than open-source projects considering their density.
On the other hand, values in attribute definition in industrial projects
and adjacency list in open-source projects are the least frequently
occurring smells.

In industrial projects, some smells show significantly higher
proneness to occur compared to open-source projects. For instance,
smell density of adjacency list smell is approximately seven times
more in industrial projects than the open-source projects. A po-
tential reason of the observation is the higher size and complexity
of the industrial projects. On the other hand, clone table tends to
occur in open-source projects considerably more frequently than
in industrial projects.

From the developers’ survey, we learned that smells ca (com-
pound attribute) and ia (index abuse) are the least subjective smells
(i.e., context matters the least for such smells) whereas smells al
(adjacency list) and va (values in attribute definition) are most sub-
jective in nature. This observation implies that a developer might
be hesitant to introduce ca or ia and more open to adopt a solution
that involve smells such as al or va. Interestingly, the occurrence
patterns show exactly the opposite trend with respect to these
smells; i.e., smells ca and ia occur the most and smells al and
va occur the least frequently in both industrial and open-source
systems.

RQ2. Does the size of the project or the database play a role in smell
density?

Approach:We computed smell density for all the detected data-
base smells. In this paper, we define smell density as the number of
database smells detected per 10 sql statements. We then compute
the Spearman’s correlation coefficient between total loc (Lines Of
Code) and smell density of the repository. We also compute the
Spearman’s coefficient between size of the database (i.e., number
of create table statements) and smell density of the repository.

Results:The Spearman’s correlation coefficient (ρ) for the dataset
is 0.2420 (p-value = 3.724× 10−06) for industrial projects and 0.0006
(p-value = 0.9731) for open-source projects. This indicates that
density of database smells has low correlation for the industrial

projects and no correlation for the open-source projects with the
total lines of code in the repository.

We also explore the relationship between smell density and size
of the database where size of a database is measured by the number
of create table statements in the repository. The Spearman’s
correlation analysis provides us ρ = 0.7338 (p-value < 2.2 × 10−16)
for industrial projects and ρ = 0.6174 (p-value < 2.2 × 10−16) for
open-source projects. The values of the correlation coefficient show
that smell density and size of the database share a fairly strong
correlation i.e., as the size of database increases, density of database
smells tends to increase.

RQ3. Does the nature of code (type of the application, or usage of
orm frameworks) affect the smell density?

Approach:We extract information concerning nature of subject
systems; specifically, we infer the type of application and used orm
(Object-Relational Mapping) framework in each repository.

We infer the type of application among the following set — Desk-
top, Mobile (either ios or Android), orWeb. We use the following
heuristics to classify a repository to one of the application types.

• We figure out the programming language used primarily in a
repository. To know the programming language used primar-
ily in a repository, we scanned all the files in the repository,
detect the files containing source-code using their file exten-
sions, and count the number of files for each programming
language that we detect. We looked for the following pro-
gramming languages: asp, c, c#, c++, html, Java, JavaScript,
Objective c, php, Perl, Python, Ruby, sql, vb, and xml.
• If the prime programming language is Java and there exists a
manifest file with name ‘AndroidManifest.xml’, we conclude
that the application is of type Mobile(Android).
• If the prime programming language is Objective c, we tag
the application as a Mobile(ios) application.
• If the repository contains one of the folders ‘Static’, ‘css’, or
‘public_html’ and primarily used programming language is
one of the php, asp, xml, or Python, then we classify the
application type asWeb.
• If the prime language is html, then also we interpret the
application type asWeb.
• If none of the above conditions meet for a repository, we
classify it as a Desktop application.

Once we identify the type of all the repositories, we measure
the average smell density for each application type. We select a
list of 19 well-known orm frameworks targeting different pro-
gramming languages — C++ (LiteSQL, ODB, QxOrm), Java (Ac-
tiveJDBC, Apache Cayenne, Eclipse Link, Enterprise JavaBeans,
Hibernate, Mybatis), Objective C (Core Data), C# (Dapper, Entity
Framework, linq to sql, NHibernate), php (Doctrine, Propel), and
Python (SQLAlchemy, Django, SqlObject). We scan the dependen-
cies of a repository specified in import (or similar) statements to
detect whether the repository uses an orm framework. For instance,
we look for import statements in Java applications for the presence
of import org.apache.Cayenne to know that the application is using
Apache Cayenne framework. We measure and compare the average
smell density for both orm-based and non-orm-based repositories.
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Results: Figure 3 (left) shows average smell density for differ-
ent types of applications. The figure shows that 1998 open-source
and 346 industrial repositories are classified as Desktop, 40 open-
source and 2 industrial repositories as Mobile, and 530 open-source
and 9 industrial repositories as Web applications. For open-source
repositories, all three application types exhibit similar database
schema smell density. It indicates that application type is not a
significant factor that affect database smell density for open-source
repositories. On the other hand, industrialWeb applications show
significantly lower smell density than the industrial Desktop appli-
cations although the sample for mobile and web applications in
industrial projects is not significant from a statistical perspective.

Figure 3: Average smell density of different types of applica-
tions (left) and projects using ORM frameworks and rest of
the projects (right)

Right side of figure 3 shows average smell density for repositories
separated based on whether they use an orm framework or not. We
observed that 681 open-source and 238 industrial projects use orm
frameworks among the analyzed projects. For industrial projects,
non-orm-based projects show lower average smell density than
the projects based on orm frameworks whereas we observe an
opposite trend for open-source projects. However, Mann-Whitney
U test shows that the difference in the average smell density is not
statistically significant (p-value = 0.0252 for industrial and p-value
= 0.1612 for open-source projects). Thus, orm frameworks do not
bring immunity from database schema smells.

RQ4. What is the degree of co-occurrence among database smells?

Approach: For each detected smell, we count occurrences of
rest of the smells in the repository to investigate the degree of
co-occurrence among database smells. We compute average co-
occurrence for each smell across all the repositories. We take the
average of the co-occurrences taking into consideration only those
values where the smell has occurred at least once. Further, we nor-
malize the average co-occurrence values with number of detected
smells. This exercise reveals the normalized co-occurrence patterns
among database smells.

Results: Figure 4 shows average co-occurrence among database
smells. The figure reveals that clone table for industrial projects and
values in attribute definition for open-source projects show highest
co-occurrence with other smells. Index abuse smell exhibits lowest
co-occurrence with other smells for both the categories of projects.
It implies that whenever a clone table in an industrial project or
values in attribute definition smell in an open-source project gets
spotted, it is very likely to find other database smells in the project.
On the other hand, index abuse smell occurs more independently.

Another interesting observation from figure 4 is that smells
shows considerably higher correlations in industrial projects. A
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Figure 4: Average co-occurrence among database smells

potential reason of the fact could be the larger size of industrial
projects than the open-source projects (industrial projects are five
times larger on average compared to open-source projects).

7 DISCUSSION
In this section, we first discuss our observations about accuracy of
the developed tool DbDeo. We also present our qualitative analysis
of the results presented in Section 6.

7.1 Accuracy of the Developed Tool
We selected ten repositories randomly, performed each step listed
in Section 5.1 (i.e., extract sql code, compute basic metrics, and
detect smells) on these repositories, and analyzed the output of
each step.

7.1.1 Accuracy of the sql Statements Extraction. An sql state-
ment may appear in host source code either independently (in
separate files) or embedded in the host source code. Majority of
times, an embedded sql statement receives some or all arguments
dynamically by the host code. This property, along with diverse
vendor-specific syntax of sql statements, makes it difficult to cover
all forms of sql statements and extract them accurately using regu-
lar expressions. Brink et al. [2] also reveals challenges in separating
embedded sql statements from host source code considering possi-
ble variations in host programming language and vendor specific
sql syntaxes. Given the importance of the extracted sql statements’
quality and associated challenges, we first assess the quality of the
extracted sql statements.

As mentioned earlier,DbDeo extracts sql statements in two steps.
In the first step, it extracts the sql statements embedded in the
source code using generic regular expressions. The tool employs a
few heuristics and stringent regular expressions in the second step.
The second step is rigorous and relatively more time consuming.
Extracting potential sql statements in the first step and then cleanse
them gives us performance without compromising on the quality
of the extracted statements.

We manually analyzed all the statements in the selected ten
repositories and classified them either as an sql statement, or as
an incomplete sql statement, an extraneous sql statement, or a
non-sql statement. An extraneous sql statement has valid sql
statement followed by extraneous text or code that is not part of
the sql statement but was matched by the used regular expression.

Table 3 shows the performance of the sql statement extraction
process. We found two incomplete and two non-sql statements in
the extracted statements. One of the incomplete sql statements
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is “create table xxx.yyy (...)”. Similarly, one of the non-sql state-
ments is “select range from Archive..”. The statement is written as a
comment but fulfils sql grammar and thus gets extracted.

Table 3: Performance of the sql extraction process
Total sql statements 818
Incomplete sql statements 2
Extraneous sql statements 0
Non-sql statements 2

7.1.2 Accuracy of Smell Detection. We detect database smells in
all the ten repositories using DbDeo. We then verify each detected
smell manually to measure the accuracy of the tool. Table 4 shows
the total number of detected instances for each smell as well as the
identified false-positive instances.

Table 4: Detected smells and identified false-positives
Smells #Instances Smells #Instances
CA 4 (0) AL 0 (0)
GT 26 (0) VA 0 (0)
MD 3 (0) MA 15 (0)
CT 23 (0) OA 26 (2)
IA 30 (0)

As the table shows, we identified two false-positive instances
in detected smells. The first false-positive instance of overloaded
attribute names smell is found in the following create table state-
ment (shown partially).

create table ‘sqrl_nonce‘ ( * ‘id‘ int unsigned auto_increment
no null primary key, * ‘nonce‘ char(64) not null, ...

The tool detects the smell because the employed parser interprets
‘*’ as the name of an attribute and tool found another such attribute
defined as different type in a different table. However, a manual
inspection reveals that this sql statement exists in a repository
written mainly in C. The above sql statement appears in a comment
and the parser used in the tool doesn’t differentiate comments from
the rest of the code. Similarly, the source of another false-positive is
also a misinterpretation by the parser. Apart from these instances,
we find other detected instances as genuine cases of schema smells.

7.2 Qualitative Analysis of the Results
In this section, we discuss the results obtained from our quantitative
analysis presented in Section 6 from a qualitative perspective.

Our analysis found a considerable number of overloaded at-
tribute names smells. Interestingly, many times developers declare
attributes, even the primary keys, with identical names but with
different types in a repository. We found that id is the most popu-
larly used name for a primary key. More than 40% of the analyzed
tables belonging to open-source projects use id as a primary key.
For industrial projects, it is considerably lower (11%). An interest-
ing observation is that their type differs significantly. We found 13
and 12 different types being used for the attribute id across all the
analyzed open-source and industrial repositories respectively.

During manual exploration, we also observed one of the reasons
for smells clone table and overloaded attribute names to occur. We
observed that these smells occur often in test or example code.
This observation highlights the quality deficit introduced in test or

example code and possibly reveals the casual mindset of developers
while writing test or example code.

Parameterized queries (where values or even sometimes attribute
names are supplied dynamically) are very common for embedded
sql statements in source code. We observed create table state-
ments are majorly defined statically; however, understandably, ma-
jority of select statements are defined as parameterized queries.
This observation has an impact on index abuse smell. Our analysis
reveals that more than 77% detected instances of index abuse smell
belong to the third variant of the smell (i.e., unused indexes). When
parameterized queries expect attribute names dynamically, our tool
cannot identify the used attribute names and produce false-positive
instances of index abuse smell.

7.3 Opportunities
In the context of this study, we outline possible ways to improve
the state of scientific and industrial practice.

Tool support ides can provide support, native or extended (via
plug-ins), for sql statements. This may allow developers to spot
common problems, such as index abuse and multicolumn attribute,
early on and rectify them. Along the same lines, orm frameworks
may raise an alarm, for instance in the form of warnings, to at-
tract developers’ attention towards potential flaws in the database
design. Sophisticated external tools may extend their support to
detect database smells and improve the quality of database schemas.
Further, language extensions may support the native treatment to
embedded sql statements. The native treatment allows a developer
to employ existing tools (the ones used for the host programming
language) for embedded sql code.

Training and awareness The role of focused training sessions
to increase awareness of database quality among developers cannot
be denied. Such sessions would enable them to learn from existing
peer knowledge and keep themselves updated with the changing
technology.

Database standards: Standards are a collection of common
practices followed globally or within an organization to ensure the
consistency and effectiveness of the database environment. A data-
base element naming convention is an example of such a standard.
Organizations may adopt stringent standards for designing data-
base schema to ensure the quality of the database system. Across
the industry, a move toward stricter and comprehensive standards
would prohibit some of the smells we identified.

Database APIs Database apis can also be improved to support
high quality schema design. Apart from deprecating obsolete fea-
tures and issuing a warning for common mistakes, apis may offer
a new mechanism to verify the schema design. For example, a new
check statement (or an optional clause) may allow interested de-
velopers to check their schema design upfront and refactor the
detected smells before they make their way to the production code.

8 RELATEDWORK
The presented work is related to studies of code quality practices in
traditional software engineering and software applications backed
by relational database systems.
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8.1 Traditional Code Quality Practices
Kent Beck [10] introduced the term “code smell” and defined it as
“certain structures in the code that suggest (sometimes they scream
for) the possibility of refactoring”. Code smells are poor design and
implementation choices that impact the quality of a software system.
Girish et al. [30] provides a comprehensive catalog of structural
design smells classified based on the principle that they violate.
Similarly, Garcia et al. [11] present a catalog of architecture smells.

Smells make a software system to decay. They cause technical
debt [16] and impair maintainability [32]. Many attempts have been
made to detect smells using static code analysis. Metrics-basedmeth-
ods [20, 27] compare metrics computed over code with specified
thresholds in order to identify code smells. Decor [21] formulates
rules provided through a domain specific language for detecting
smells such as blob and swiss army knife. Machine learning-based
approaches, such as Bayesian Belief Networks [15] and Support
Vector Machines [18], have been used to detect smells.

Apart from traditional source code, smells have been detected
in other related domains. For instance, Hermans et al. [12] and
Cheung et al. [6] detect smells in spreadsheets using metric-based
and machine learning-based methods respectively. Similarly, Pup-
peteer [26] relies on static code analysis for detecting code smells
in software configuration code. Our tool DbDeo also employs static
code analysis to extract and cleanse sql statements from the host
source code and to identify database schema smells.

8.2 Code Quality Practices in Database
Applications

There is scant research that explores the quality characteristics
of database code. Karwin [14] presents a comprehensive catalog
of database antipatterns drawn from industry experience. He or-
ganizes antipatterns in four categories: logical database design,
physical database design, query, and application development an-
tipatterns. We build on the antipatterns illustrated in this book,
especially the first category of database smells i.e., logical database
design, and complement it with smells (or best practices) gathered
from other resources.

Authors have attempted studies to explore the quality aspect of
database code. Brink et al. [2] discusses the challenges in extracting
sql statements from the host source code and presents a method to
extract and distil sql statements. The study provides a set of basic
metrics concerning database such as number of tables and nested
queries. Chen [4] proposes strategies for reducing the impedance
mismatch between the relational and object-oriented model in order
to improve database performance and integrity.

The knowledge and experience accumulated in popular question
and answer sites can be leveraged to help developers avoid smells in
sql queries. Nagy et al. [23] mine Stack Overflow questions that are
relevant to sql queries. The study extracts sql error patterns as a
first step towards a recommendation system that aids developers to
construct correct queries. Eessaar [8] also discusses a few heuristics
that can be employed to detect some of the database smells outlined
by Karwin [14]. Many authors have explored object-relational map-
ping in the context of their implications on application design [31]
and performance [5].

Our work differs from the ones described above in that it presents
a large scale empirical analysis that studies quality characteristics
(database schema smells and their relationship with application
characteristics) of database code.

9 THREATS TO VALIDITY
Construct validity concerns the appropriateness of observations
made on the basis of measurements taken during the study. Static
code analysis is always prone to false-positives and false-negatives.
We employed a comprehensive set of tests for the tool to rule out
obvious deficiencies. Additionally, we measured accuracy of the
developed tool manually; we found the results of the accuracy
analysis very satisfactory.

One may adopt one of the numerous techniques to parse and
collect relevant source code information. These techniques include
ast parsing, string matching, and reflection [29]. Due to the lack
of an available tool to extract cleansed sql statements from a host
source code, we implemented the extraction functionality in our
tool using regular expressions. Although, the regular expression-
based solution cannot be as efficient as ast parsing (for example,
separating sql statements that are appearing in comments is in-
herently difficult with regular expressions). We employed two-step
extraction process to overcome the deficiency. Additionally, we
checked the results using both automated and manual tests.

The extraction of the full schema of a database is not guaranteed
using the employed method. The implication of such a limitation is
that our smell detectionmethodwill not report smells that may exist
in the uncovered sql statements. The presented smell detection
mechanism uses a threshold (for god table smell). Choosing an
appropriate threshold is challenging given its subjective nature. We
chose the threshold carefully based on personal experience and in
such a way that it is neither too lenient nor very stringent.

External validity concerns generalizability and repeatability of
the produced results. We cover syntaxes used for major database
providers and new syntaxes can be adopted by modifying the cur-
rently used regular expressions. Also, the experiment is repeatable;
we have made the tool open-source under a liberal license. Further,
the raw data generated by the presented analysis has been made
available online.

10 CONCLUSIONS
The paper presents a comparative study of relational database
schema smells and its relationship with application and database
characteristics. We present a catalog of 13 database schema smells
based on commonly known best practices to design databases. We
carried out a survey to understand developers perspective on data-
base schema smells. We downloaded 16,052 open-source and ac-
quired 840 industrial repositories, selected total 2925 repositories
containing sql statements, analyzed more than 629 million lines
of code, extracted more than 393 thousand sql statements, and de-
tected more than 66 thousand instances of database schema smells.
We investigated four research questions and provided empirical
observations based on the data obtained.

We observed that 1) the smell index abuse occurs most frequently
in database code, 2) in industrial projects, some smells such as adja-
cency list show significantly higher proneness to occur compared to
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open-source projects, 3) the size of the host application has no im-
pact on the density of database smells; however, smell density shows
positive correlation with the size of the database, 4) application
type (Desktop,Mobile, orWeb) has no significant impact on database
smell density, 5) use of an orm framework doesn’t avoid database
schema smells, and 6) the smell clone table in industrial projects and
smell values in attribute definition in open-source projects exhibit
the highest co-occurrence with other database smells.

We also outline a few opportunities to improve the state of
the scientific and industrial practice. Specifically, tools to analyze
embedded sql statements and identify potential quality issues could
significantly improve the schema quality. Organizations may also
contribute to this pursuit by defining appropriate internal standards
and training programs. Finally, innovations to database apis may
improve the quality schema design.

We envision the following potential directions for the future.
1) In this paper, we restricted the scope of the study to database
schema smells. In the future, we would like to perform a study with
expanded scope including query and data smells as well. Addition-
ally, it will be interesting to observe inter-category relationships
among database smells. 2) We would like to quantify the impact
of the smells on key quality attributes such as performance and
maintainability. 3) Finally, we would like to catalog and identify
database smells that impair portability.
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