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Abstract

Context: Architecture of a software system represents the key design de-
cisions and therefore its quality plays an important role to keep the software
maintainable. Code smells are indicators of quality issues in a software sys-
tem and are classified based on their granularity, scope, and impact. Despite
a plethora of existing work on smells, a detailed exploration of architecture
smells, their characteristics, and their relationships with smells in other gran-
ularities is missing.
Objective: The paper aims to study architecture smells characteristics, in-
vestigate correlation, collocation, and causation relationships between archi-
tecture and design smells.
Method: We implement smell detection support for seven architecture smells.
We mine 3 073 open-source repositories containing more than 118 million lines
of C# code and empirically investigate the relationships between seven archi-
tecture and 19 design smells.
Results: We find that smell density does not depend on repository size. Cu-
mulatively, architecture smells are highly correlated with design smells. Our
collocation analysis finds that the majority of design and architecture smell
pairs do not exhibit collocation. Finally, our causality analysis reveals that
design smells cause architecture smells.
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1 Introduction

In the software development lifecycle, software design spans from low-level
class design to high-level architecture design. The quality of software design,
including all its facets, plays an important role in keeping a software system
maintainable.

Code smells [26, 77] are indicators of software quality deterioration that
make software hard to maintain. Based on granularity, scope, and impact,
smells are classified as implementation [26], design [78], and architecture smells
[29]. Implementation smells are confined to a limited scope, typically to a
method, and require relatively less effort to refactor. Design smells have a
larger scope and impact and therefore refactoring a design smell may in-
troduce a change in a set of classes. The architecture of a software system
represents the critical design decisions that span multiple components and
have a system-level impact [4]. Thus, architecture smells affect a set of com-
ponents and require considerable effort to refactor [56] given their relatively
wider scope. Although the effort to refactor smells matches the increase in
their granularity, the corresponding benefits and positive consequences also
increase significantly [70].

Over the fifteen years, the software engineering community has proposed
many code smell detection mechanisms [77]. These are divided into categories
such as metric-based [54], rule-based [60], history-based [68], and machine
learning-based [3] methods. Among these categories, metric-based mechanisms
are the most widely employed. However, the existing research mainly supports
implementation and some design smells. The research on architecture smells
and their detection is still in a budding stage [29,70], and requires serious at-
tention from the community given their importance and impact on the quality
of software systems.

There have been some attempts to understand the impact of code smells on
architecture quality. For instance, Macia et al. [50] investigated the impact of
nine code smells on five architecture smells and revealed that code smells are
related to 78% architectural anomalies in the studied systems. Also, they found
that some code smells show a higher correlation with architecture smells. Some
authors [50,51,64] studied the interplay among smells at different granularities
and deduced that the inter-related smells affect architecture quality negatively.
Source code granularity has been found to be helpful in similar contexts such
as architecture recovery [48] and defect prediction [16].

Despite these attempts to understand the impact of code smells on ar-
chitecture as well as leveraging the inter-smell relationships to find optimal
sequences to refactor smells [46], the relationships (such as correlation and
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collocation) among smells at various granularities have not been explored in
detail. Collocation refers to a relation between a smell pair instance that is
detected in the same source code element (such as a class) [85,89] whereas cor-
relation measures the degree of co-occurrence in terms of number of instances
detected in a source code element (such as a component) between two kinds of
smells [22, 74]. Related work [50, 51, 64] suggests that there could be a causal
relationship among smells at design and architecture smells; however, to the
best of our knowledge, none of the earlier work attempts to establish causal-
ity between design and architecture smells. In addition, this work attempts
to broaden the scope of the analysis both in terms of the number of smells
detected and analyzed as well as the number of analyzed repositories.

This paper contributes to the current research pertaining to the field of
architecture smells in the following ways:

– Correlation and collocation analysis between code smell categories: We an-
alyze a large set of repositories and infer relationships among the smells
belonging to two granularities (architecture and design) through correla-
tion and collocation analysis. In particular, the analysis explores whether
there are specific design smells that may act as indicators for specific ar-
chitecture smells. This exploration may reveal the intricate relationships
among smells at different granularities and help us glean insights from the
presence or absence of explored relationships.

– Causality analysis between design and architecture smells: We investigate
temporal relationship between smell types to figure out whether design (or
architecture) smells cause architecture (or design) smells.

– Automated architecture smell detection: We automate the detection of a
set of seven architecture smells.

– Code smell dataset: We build a large dataset comprising 1 232 348 instances
of seven architecture and 19 design smells, extracted from 3 073 open-source
C# repositories. The dataset is available online [72] for the use of software
engineering research community.

The rest of the paper is structured as follows. Section 2 explains the moti-
vation behind this work. Then we discuss the existing literature in Section 3.
Section 4 outlines theoretical background describing all the design and archi-
tecture smells considered in this work along with their detection mechanism.
We define and briefly explain the research questions undertaken in Section 5.
We also describe the experimental study design including selection of subject
systems and the overall experimental method. Results of the experiments and
observations corresponding to each research question are presented in Section
6. We extend our discussion on the explored relationships along with implica-
tions to software development community in Section 7. Finally, we conclude
the paper with some promising future work in Section 9.
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Fig. 1: Motivational example—Component DotNetOpenAuth.Messaging has
60 classes; each box represents a disconnected sub-graph and contains related
classes (via association, aggregation, composition, or inheritance). Class names
written in red color show unutilized abstractions.

2 Motivation

The software engineering community has defined several code smells belonging
to different granularities [77]. Many of these smells seem to be related to each
other following different kinds of relationships—some smells show presence of
other smells while some smells lead to other smells. Yamashita et al. [89] and
Mantyla et al. [52] explore some of the relationships. In this section, we discuss
a motivating example to establish a theoretical relationship between unutilized
abstraction [78] design smell and feature concentration [2] architecture smell.
This relationship helps in forming the basis of our research presented in this
paper.

Unutilized abstraction design smell arises when an abstraction (e.g. class)
is not used at all by other abstractions in a software system [78]. Feature con-
centration architecture smell occurs when a software component implements
more than one architectural feature or concern [2]. This smell is detected by
computing Lack of Component Cohesion (lcc) metric. lcc is computed by
first identifying and grouping the related classes (by association, aggregation,
composition, or inheritance) of a component in the form of a dependency
graph. Dividing the number of disconnected sub-graphs by the total number
of classes in the component gives us the value of the metric. A component
with lcc greater than a pre-defined threshold is identified as the component
suffering from feature concentration smell (refer to Section 4.2 for detection
mechanism of feature concentration smell).

Figure 1 shows all 60 classes belonging to DotNetOpenAuth.Messaging

component of DotNetOpenAuth.Core project in an open-source C# reposi-
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tory1. We form sub-graphs of the related classes as described above and put
them in a box; therefore, each box represents a disconnected sub-graph. The
grouping of classes results in 14 sub-graphs. The computed lcc is 14/60 = 0.21
that makes the component suffering from feature concentration smell (assum-
ing the threshold of lcc = 0.20).2

Interestingly, 13 classes are not used anywhere (shown in red color in Figure
1) and hence suffer from unutilized abstraction smell. Now, it can be observed
that the reason for six sub-graphs to be detected as disconnected is rooted in
the unutilized abstraction design smell instances (since all the classes in these
sub-graphs are unutilized). These instances are contributing to the increase
in the lcc value, and are, in turn introducing the feature concentration smell
in the component. If we refactor each of these unutilized abstraction smell
instances, the number of disconnected subgraphs reduces to eight and the
total number of classes to 47. The new lcc value after the refactoring is
8/47 = 0.17. This implies that the component no longer suffers from the
feature concentration architecture smell. It can, therefore, be expected that
a higher number of unutilized abstractions present at the design granularity
in a component increases the chances of feature concentration smell at the
architecture granularity. It also implies that if we refactor unutilized abstraction
smell from a component, it might lead to the removal of feature concentration
architecture smell.

Identifying architecture smells and removing them is an important yet
daunting task [70]. Software development teams often hesitate to refactor ar-
chitecture smells given their larger scope and risks [70]. For example, refactor-
ing a god component architecture smell may result in creating another com-
ponent with relevant classes from the god component. This refactoring may
break the build unless all the references to classes moved to the new compo-
nent are fixed accordingly. Furthermore, if some of the components are owned
by different geographically dispersed teams, the need for refactoring has to be
communicated to the teams and a consensus has to be built before actually
carrying it out. We believe that exploring the relationships among architec-
ture smells and smells at finer-granularity (such as design granularity) may
facilitate easier adoption of architecture refactoring. This will help researchers
and practitioners in understanding the role of finer-granularity code smells in
introducing various architecture smells, in turn cautioning developers against
the architecture degradation abilities of such smells.

3 Related Work

The topic of architecture smells and its impact on software development has
been a subject of interest for software engineering community for many years.

1 https://github.com/DotNetOpenAuth/DotNetOpenAuth
2 In cases where there is no previous work recommending specific threshold values, we

chose a value based on our experience in analyzing source code and after experimenting
with various threshold values and manually analyzing the resultant set of detected smells.
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We divide the literature related to this paper into four major parts: archi-
tecture smells, smells relationships, the impact of code smells on architecture
degradation, and smell detection tools.

3.1 Architecture Smells

Garcia et al. [29] define an initial set of architecture smells including ambigu-
ous interface and scattered parasitic functionality. Garcia [28] provides mathe-
matically formal definitions of smells that help implement the smell detection
tools for architecture smells. Duc Minh [42] presents an extended catalog of
architecture smells along with the impacted quality attributes. A number of
attempts [21,41,53,69] have been made to deliberate on introducing conceptual
definitions along with the categorizations of smell relationships.

Similarly, Brown et al. [10] documents a set of architecture smells, among
organization and process antipatterns, in enterprise settings. Andrade et al. [2]
define a set of architecture smells for Product Line Architecture (pla). Tam-
burri et al. [79] explore the impact of community smells on architecture quality.
An open-source architecture repair model is defined by Tran et al. [80]. They
argue that the difference between the conceptual architecture and concrete
architecture is the main reason behind the occurrence of architecture smells.
Behnamghader et al. [6] utilize arcade to compute change and decay metrics
associated with architecture evolution.

Recently, some focused research attempts have been made to understand a
specific kind of technical debt [39] i.e., architecture technical debt [7]. In partic-
ular, architecture debt identification has attracted considerable effort [44,82].
Along the same lines, Mo et al. [59] explores the impact of refactoring on ar-
chitecture debt. Similarly, Koziolek et al. [38] present an industrial case study
to ensure the sustainability of software architecture using architecture metrics.

3.2 Smell Relationships

The focus of the current research that investigates the relationships among
code smells has been mainly on either design or implementation granularity.
The current research on smell relationships hardly involves architecture smells.
Recent years have witnessed a number of empirical studies [47,87] that explore
inter-smell relations. Yamashita et al. [88,89] empirically investigate the inter-
smell relationships, termed as collocated and coupled, among 24 and 12 code
smells, respectively. They explore mainly design smells and a few implemen-
tation smells. Their study reveals that the explanatory power of code smell
relationships needs further investigations with complementary perspectives in
order to be deemed useful. Similarly, Ma et al. [49] identify several coupled
and some conflicting smell pairs among a set of 10 code smells.

Palomba et al. [67] investigate the collocation (termed as co-occurrences)
among 13 design and implementation smells over multiple releases of 30 open-
source software systems. In a parallel work, Walter et al. [85] conduct an
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experimental study to explore the collocation relationship among 14 design
and implementation smells across 92 Java applications. They employ a variety
of smell detection tools to explore the impact of tool selection on the smell
relationships. Additionally, they explore the effect of the application domain
on these relationships. Both of these studies foresee the importance of smell
collocations in identifying classes requiring high maintenance effort and de-
veloping appropriate refactoring approaches as well as support from tools to
detect smell collocation.

Fontana et al. [22] carry out an empirical study on the relationship be-
tween architecture and code smells. They analyze the correlation between a
set of 3 architecture smells (viz. unstable dependency, hub-like dependency, and
cyclic dependency) and 19 code smells including both implementation and de-
sign smells. They use Arcan and SonarQube tools to detect architecture and
code smells in 111 Java subject systems. They report that the presence of
architecture smells do not depend on the presence of code smells.

Sharma et al. [75] conduct a large-scale mining study to understand the re-
lationships between design and implementation smells. Specifically, the study
explores inter-category and intra-category correlation between smells belong-
ing to different granularities. Bavota et al. [5] mine code smells in 3 Java-based
programs and explore the relationship of smells with refactoring and software
quality. Similarly, a study by Fontana et al. [20] reveals characteristics of smells
such as the frequently occurring smells in various application domains.

3.3 Impact of code smells on architecture

It is believed that the code smells affect software architecture in a negative
way. Macia et al. [51] present an empirical study on the relationship between
code anomalies and architecture degradation. They reveal the deficiency of
the present set of smell detection tools to capture the correlated architecture
problems.

Oizumi et al. [63, 65] believe that the architecture problems are reflected
in the source code through groups of code smells and study the impact of a
number of code smell agglomerations on architecture problems. Guimaraes et
al. [31,32] conduct a controlled experiment utilizing architecture blueprints to
prioritize various types of code smells based on their architectural relevance.

Martini et al. [56] conduct a case study on three architectural smells em-
ploying questionnaires, interviews, and code inspections on four industrial soft-
ware projects. The main aim of the study is to identify and prioritize the ar-
chitecture debt with the help of architecture smells. The findings of the study
acknowledge the adverse effects of architecture smells and emphasize on the
unavailability of automatic smell detection tools. Le et al. [43] perform an
empirical investigation on the nature and impact of six architecture smells
that most frequently appeared in a set of eight Apache Software Foundation
open-source projects. They designed detection algorithms for these smells and
explored relationships between issues and architecture smells under study. The
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outcome of the study states the negative impacts of architecture smells on
maintenance effort in terms of the increased number of implementation issues
and code commits.

3.4 Smell Detection Tools

A plethora of smell detection tools has been developed by the community us-
ing various techniques. The prominent techniques used to detect smells are
metrics-based [54, 83, 84], rules-based (or heuristics) [60], machine learning-
based [36], and history-based [66]. However, most of the present tools support
the detection of a very scanty kind of smells and target mainly Java program-
ming language. Moreover, the existing tools mainly focus on implementation
and a limited set of design smells.

There have been some attempts to detect architecture smells. Titan tool-
set [86] detects modularity violations such as cyclic dependencies. Similarly,
Arcan [23] detects two architecture (cyclic dependency and unstable depen-
dency) and one design smells (hub-like dependency). Mo et al. [58] identify a
set of hotspot patterns (recurring architecture problems) based on a combina-
tion of historical and architectural information of software systems. Hochstein
et al. [34] describe a method of diagnosing architectural degeneration using an
architecture evaluation tool. Nam et al. [62] present a method to visualize the
evolution of software architecture that may lead a manual observer to spot
architecture smells. arcade [6] allows architecture recovery and computing of
architecture decay and change metrics to observe and track architecture evo-
lution. Despite the above-mentioned attempts, to the best of our knowledge,
none of the existing publicly available tools can detect a decent number of
architecture smells in large software systems.

There are a few commercial tools such as Lattix3, Sotoarc4, and Struc-
ture1015 that support architecture comprehension and conformance. Although
some architecture smells (such as cyclic dependency) could be detected using
these tools, they do not support architecture smell detection natively and ex-
plicitly. For design smells, tools such as NDepend6 and JArchitect7 help users
identify quality issues. The analysis provided by these tools may aid the users
in spotting some specific design smells (such as unutilized abstraction, insuffi-
cient modularization, and cyclically-dependent modularization). However, the
tools lack explicit support for design smells. Table 1 provides a brief overview
of the features supported by various commercial tools.

To summarize, the presented study provides a useful tool for practition-
ers and researchers to detect architecture and design smells. but also explores
the relationships among them by analyzing a large number of repositories. The

3 https://lattix.com/
4 https://www.hello2morrow.com/products/sotograph/sotoarc
5 https://structure101.com/
6 https://www.ndepend.com/
7 https://www.jarchitect.com
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Table 1: Comparison of commercial tools for design/architecture analysis

Tools Design/Architecture
smells natively
supported

Design/Architecture
smells indirectly
supported

Other features

NDepend Insufficient mod-
ularization, mul-
tifaceted abstrac-
tion, unutilized
abstraction, deep
hierarchy

Code quality met-
rics, dependency
matrix, complexity
analysis, code
query

Quality gate, trend
monitoring, contin-
uous integration re-
porting

JArchitect Insufficient mod-
ularization, mul-
tifaceted abstrac-
tion, unutilized
abstraction, deep
hierarchy

Code quality met-
rics, dependency
matrix, code query

Quality gate, trend
monitoring

Lattix Archi-
tect

Dependency ma-
trix

Architecture com-
pliance, continuous
monitoring

SotoArc Interactive depen-
dency visualization

Architecture com-
pliance, refactoring
simulation

Structure101 Interactive depen-
dency visualiza-
tion, complexity
analysis

Architecture com-
pliance

Designite 19 design and 7 ar-
chitecture smells

Code quality met-
rics, dependency
matrix

Trend analysis

study presented in this paper is different from the existing research in a variety
of ways. Firstly, we explore the relationships (through correlation, collocation,
and causality analysis) between architecture- and design-level smells, whereas
the previous studies focused on identifying predominantly the collocation of
design smells. We believe that studying smell relationships horizontally (i.e.,
smells belonging to the same granularity) as well as vertically (i.e., smells be-
longing to different granularities) will complement the existing literature and
reveal new insights. Secondly, where a number of previous studies [1, 67, 85]
infer that the collocation of code smells complicates source code comprehen-
sion and maintenance, the collocation of smells at different design granulari-
ties might serve as a blessing in disguise as an occurrence of design granularity
smell may indicate the occurrence of an architecture granularity smell, provid-
ing useful pointers to the developers for design optimization through effective
refactoring. Thirdly, this is a mining study involving a relatively large set of
more than three thousand open-source C# repositories including 26 design
and architecture smells, which is expected to make the findings more general-
izable. To the best of our knowledge, none of the existing research attempts
targets to explore the temporal causality as well as correlation and collocation
relationships between individual architecture and design smells.
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4 Theoretical Background

In this section, we provide definitions of the considered architecture and design
smells. Our presentation of the considered seven architecture and 19 design
smells is based on the existing, considerable, coverage by the research and
practitioner communities. Further, we elaborate on the detection mechanism
of architecture and design smells that we use in our implementation.

4.1 Smell granularities and terminology

Code smell is an umbrella term used to describe indicators of poor quality
that may occur in source code. Smells are classified based on various crite-
ria [77] such as domain, granularity, and artifact. In the traditional source
code context, software smells are classified based on their scope and impact
in the following three granularities: implementation, design, and architecture.
Implementation smells are confined to typically a method. For instance, long
method, long parameter list, or complex conditional [26] are implementation
smells that can be detected just by observing the source code of a method.
The granularity of design smells is higher than implementation smells where
we observe classes, their properties, and their relationships with other classes
to detect them. Examples of design smells include insufficient modularization,
multifaceted abstraction, and deep hierarchy [78]. Architecture smells occur at
the highest granularity. We see source code in the form of components and
their interactions with other components. Feature concentration, god compo-
nent, and dense structure are examples of architecture smells [29]. In this
study, a component refers to a namespace or an assembly in C# (equivalent
to a package construct in Java) and a type or an abstraction refers to a class or
an interface. Though the above discussion applies to object-oriented context,
it can be generalized to apply on non-object oriented source code.

Many smells belonging to different granularities have similar names or
causes. Despite the similarity, these smells are different because their scope
and impact vary significantly. For example, cyclic-dependency modularization
and cyclic dependency arise at design and architecture granularities, respec-
tively. Although their names are almost the same, their semantics differ. Cycles
(either directly or indirectly) among classes lead to cyclically-dependent mod-
ularization smell at design granularity whereas a cycle formed by two or more
components introduces cyclic dependency architecture smell. The difference
between the two lies in the granularity and the level of abstraction. Similarly,
though multifaceted abstraction and feature concentration smells share the
cause i.e., poor cohesion, they arise at design and architecture granularities re-
spectively. Despite the same cause, their scope and impact differ significantly—
multifaceted abstraction is the result of poor cohesion in a class whereas fea-
ture concentration shows poor cohesion among a set of classes belonging to a
component. Apart from the differences arising from scope and impact, their
detection mechanism also differ. For instance, multifaceted abstraction gets de-
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tected by computing Lack of Cohesion among Methods (lcom), which takes
into account the commonalities (such as common field access) among the meth-
ods of a class. On the other hand, feature concentration architecture smell is
detected by computing Lack of Component Cohesion (lcc) which considers
similarity among classes (refer to Sections 4.2 and 4.3).

In this study, we restricted the scope of the analysis to source code; thus,
we are analyzing source code to detect smells at different granularities. A
set of architecture smells can also be detected by comparing design artifacts,
such as architecture diagrams or design specifications, with the source code.
However, it is not feasible to find architecture diagrams or specifications for
open-source projects. Moreover, even if they are available, they significantly
differ in notation as well as form and format that makes it practically infeasible
to consider them for the purpose.

4.2 Architecture Smells

The architecture smells selected for this study represent anomalies related to
a variety of internal software quality aspects. For instance, feature concentra-
tion smell represents cohesion, scattered functionality represents coupling, god
component captures size, and dense structure represents complexity aspects.
We implemented the support to detect architecture smells in Designite for
this study. We also considered the automation feasibility of smell detection
while choosing these smells and hence did not pick architecture smells that
are infeasible or too complex to be automated. One example of such a smell is
stovepipe system architecture smell [10] which is detected when subsystems of
an application are integrated in a temporary manner using multiple integration
strategies and mechanisms.

The architecture smells considered in this paper along with their detection
mechanisms are explained below. The detection mechanism used in the tool
is in-line with the existing literature. For instance, unstable dependency smell
gets detected by computing instability metric of each component, which is
proposed by Martin et al. [55] and used by Fontana et al. [23,24]. Some of the
smells are implemented for the first time in the software engineering literature
as far as we know; hence, for them we not only provide detection mechanisms
but also discuss the rationale used to decide any threshold they use. Taking a
deeper look at the thresholds reveals that there are two kinds of thresholds;
apart from the key metric thresholds, sometimes additional conditions are
imposed to reduce the possibilities of false-positives. For instance, ambiguous
interface smell gets detected when a component has only one public method.
However, this heuristic will lead to many small components to be detected as
the components suffering from this smell. Hence, to avoid this, we apply an
additional check to ensure we don’t detect too small components as smelly
components.



12 Tushar Sharma, Paramvir Singh, Diomidis Spinellis

4.2.1 Cyclic Dependency

This smell arises when two or more architecture-level components depend on
each other directly or indirectly [45,58].

Detection mechanism:

– We compute a dependency list for each component. Therefore, such a list
for component A represents the components on which component A de-
pends. Component A depends on component B if at least one of the classes
in A refer (by association, aggregation, or composition) to at least one of
the classes in component B.

– We construct a directed graph using the above information where nodes
refer to components and edges refer to their dependencies.

– We then apply depth-first search algorithm to detect cycles in the graph for
each component. For large graphs, we stop the exploration after a threshold
(currently set to 5 hops) to avoid extraneous computation.

4.2.2 Unstable Dependency

This smell arises when a component depends on other less stable compo-
nents [24]. Stable Dependencies Principle (sdp) [55] states that the dependen-
cies between packages should be in the direction of the stability of packages.
Hence, a package should only depend on packages that are more stable than
itself. An unstable dependency architecture smell occurs when this principle is
not followed.

Detection mechanism:

– Instability of a component is computed as follows:

I =
Ce

Ce + Ca
(1)

Here, I represents the degree of instability of the component, Ca represents
the afferent coupling (or incoming dependencies), and Ce represents the
efferent coupling (or outgoing dependencies).

– We compare the computed metric value of each component against its de-
pendent components, and detect the smell when the dependent component
is more stable.

4.2.3 Ambiguous Interface

This smell arises when a component offers only a single, general entry-point
into the component [29]. This smell typically appears in event-based publish-
subscribe systems where interactions are not explicitly modeled and multiple
components exchange event messages via a shared event bus.

Detection mechanism:
We detect this smell when we find a component containing only one public

or internal method. An internal method in C# has the visibility inside the
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assembly; hence, other components within the assembly may access it. We
detect the smell only when the component has at least 5 classes to avoid small
components from getting reported as ambiguous interfaces. This additional
check is applied to avoid false-positives derived from reported false-positive
cases from users of Designite.

4.2.4 God Component

This smell occurs when a component is excessively large either in terms of
Lines Of Code (loc) or the number of classes [45].

Detection mechanism:
We detect this smell when a component has more than 30 classes or 27 000
loc following the recommendations by Lippert et al. [45].

4.2.5 Feature Concentration

This smell occurs when a component realizes more than one architectural
concerns or features [2]. In other words, the component is not cohesive.

Detection mechanism:

– The software engineering literature has relied on metrics such as Lack of
Cohesion of Methods (lcom) [11] to identify diverse features or responsibil-
ities realized by a class. We have extended the same concept for detecting
the feature concentration smell. We compute Lack of Component Cohesion
(lcc) to measure a component’s cohesion.

– To compute lcc, we identify related classes in a component, prepare a
dependency graph, and identify the number of disconnected sub-graphs.
Two classes are related if they share any of the association, aggregation,
composition, or inheritance relationships.

LCC =
Number of disconnected sub-graphs

Total number of classes
(2)

– We detect this smell if lcc is more than a pre-defined threshold. We cur-
rently use 0.2 as the lcc threshold to detect this smell. We chose this
threshold after experimenting with various threshold values and analyz-
ing the resultant set of detected smells manually. Since this smell has
never been detected in software engineering literature, we derive the met-
ric threshold by the following heuristic. If all the classes are connected to
other classes in a component, the resultant dependency graph would be a
connected graph and we will get lcc = 0. Hence, any component having
lcc >0 can be considered as a candidate for this smell. However, it would
be a very stringent threshold. We experimented with a few options (0, 0.1,
0.2, and 0.3) to find out a suitable threshold by comparing the results with
these options and found 0.2 as the optimal threshold. However, we allow
other users and researchers to change the threshold in the tool as per their
needs.
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4.2.6 Scattered Functionality

This smell arises when multiple components are responsible for realizing the
same high-level concern [29]. It is an indication that possibly classes or methods
must be moved from one component to another in order to reduce coupling
among components and enhance cohesion within each component.

Detection mechanism:

– We determine the accesses to at least two external components that occur
from a method.

– When two or more components are accessed from one method, it becomes
a possible case of scattered functionality smell. However, to ensure that
we are not reporting the one-off instances (and thus false-positives), we
identify the smell when such accesses occur more than one.

4.2.7 Dense Structure

This smell arises when components have excessive and dense dependencies
without any particular structure [74].

Detection mechanism:

– This smell occurs when components form a very dense dependency graph.
In order to detect this smell, a dependency graph involving all the com-
ponents is formed and the average degree of the graph is computed. The
average degree of a graph can be computed as follows:

Average degree =
2× |E|
|V |

(3)

Where E is the set of all edges and V is the set of all vertices belonging
to the graph.

– We detect the smell when the average degree is greater than a pre-defined
threshold. To choose an appropriate threshold, we started with the 7±2 rule
of psychology [57]. We experimented with values 5 to 9 for the threshold
value and analyzed the resultant set of detected smells manually. We found
the threshold value 5 as the most appropriate.

– Since the dependency graph is formed by considering all the components
present in a repository, at most only one instance of this smell can occur
for a source code repository.

4.3 Design Smells

Suryanarayana et al. [78] proposed a mechanism to classify design smells iden-
tified in the literature based on four major object-oriented principles (i.e., ab-
straction, encapsulation, modularization, and hierarchy). We detect 19 smells,
all that is feasible to implement without detecting too many false-positives,
out of 25 smells proposed in the catalog. This set of supported smells covers
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all the commonly known and studied design smells. Though, the design smells
detection support in Designite has been discussed in earlier work [75, 76], we
elaborate on the detection mechanism for all the considered design smells.
As the case with architecture smells, we provide rationale for choosing certain
threshold where the smells are not commonly detected and their corresponding
thresholds are not known.

4.3.1 Duplicate Abstraction

This smell arises when two or more abstractions have identical names or iden-
tical implementations. Duplicate code is difficult to maintain. Often, a change
in one of the clones needs to be reflected across all the other duplicates. Over-
looking this implied overhead may lead to difficult to trace bugs. This smell
can be refactored by identifying and extracting a common implementation in
the duplicates into a common class or method [78].

Detection mechanism: We detect this smell when we find code clones
(type-1) [37] of size greater than 20 lines. The size is chosen as 20 lines to
avoid detecting smaller auto-generated code snippets as clones.

4.3.2 Imperative Abstraction

This smell arises when an operation is turned into a class. If operations are
turned into classes, the design suffers from an explosion of one-method classes
and complexity of the design increases. This smell can be refactored by creating
an appropriate abstraction to host the method existing within the imperative
abstraction [78].

Detection mechanism: If a class has only one public method and the
size of the class (in terms of loc) is greater than the pre-defined threshold
(i.e., 100), we detect this smell. We applied this threshold to avoid detecting
smaller classes which contain only one method but do not justify the rationale
of getting converted the class into a method.

4.3.3 Multifaceted Abstraction

This smell arises when an abstraction has more than one responsibility —
contract or obligation [9, p. 53] — assigned to it. When an abstraction includes
multiple responsibilities, it implies that the abstraction will be affected and
needs to be changed for multiple reasons. The smell can be refactored by
applying “extract class” refactoring on a subset of methods to form more
cohesive classes [78].

We clarify now in the manuscript that term ‘responsibility’ (which is com-
ing from object-oriented parlance) means the abstraction’s contract or obli-
gation. It also reflects in Single responsibility principle. Software engineering
literature is using the LCOM metric to measure the (lack of) cohesion that
essentially captures the interactions among the source code elements of the
class and identifies the degree of cohesiveness.
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Detection mechanism: Software engineering literature is using the Lack
of Cohesion among Methods (lcom) metric to measure the (lack of) cohesion
that essentially captures the interactions among the source code elements of
the class and identifies the degree of cohesiveness. To detect the smell, we
compute (lcom) metric for each type. If the value of the metric is greater
than a threshold (i.e., 0.80) and the type is not very small —number of fields
and methods are greater than or equal to a threshold (i.e., 7), we detect the
smell. The threshold on lcom is inspired by existing work [19] and a popular
code quality tool NDepend8.

4.3.4 Unnecessary Abstraction

Each abstraction has two essential elements—data (i.e., fields) and behav-
ior (i.e., methods). If an abstraction does not have associated methods but
only fields, then that abstraction is not needed. This smell occurs when an
abstraction that is actually not needed (and thus could have been avoided)
gets introduced in software design. Having needless abstractions in the design
increases its complexity unnecessarily and affects the understandability of the
overall design. This smell is eliminated by removing the unnecessary abstrac-
tion or by applying “inline class” refactoring to merge the class with another
class [78].

Detection mechanism: If a type (except enumerations) has no methods
and the number of fields and properties are less than a threshold (i.e., 5),
we detect this smell. We derive this threshold because the number of fields
and properties less than the threshold are commonly declared as a part of
enumeration types or can be easily placed in the classes where they are getting
used.

4.3.5 Unutilized Abstraction

This smell arises when an abstraction is left unused (either not directly used
or not reachable). Unused abstractions pollute the design space and increase
cognitive load. In addition, such abstractions may lead to reliability issues
by getting invoked accidentally. An unused abstraction can be refactored by
eliminating it from the code [78].

Detection mechanism: A type is unutilized if the fan-in metric of the
type is zero i.e., there are no classes that depend on this type and the type
has no supertype. In case, the type has supertype, the type suffers from this
smell if fan-in for both the type and its supertype is zero.

4.3.6 Deficient Encapsulation

Public fields are accessible across the software system and hence they make
software design complex and debugging difficult. This smell occurs when the

8 https://www.ndepend.com/docs/code-metrics#LCOM



Relationship between Design and Architecture Smells 17

declared accessibility of one or more members of an abstraction is more per-
missive than actually required. Presence of this smell indicates that the inter-
nal implementation details are exposed for the abstraction leading to reduced
understandability due to the complex interface. Also, the clients of the abstrac-
tion may depend directly upon the implementation details of the abstraction
making it difficult to change and extend the abstraction. It can be refactored
by applying “encapsulate field” refactoring [78].

Detection mechanism: If a type has at least one public field or global
field (declared as public static), we detect this smell.

4.3.7 Unexploited Encapsulation

This smell arises when explicit type checks are performed (using chained if-
else or switch statements that check for the type of the object) instead of
exploiting the variation in types already encapsulated in the form of an inheri-
tance hierarchy. A hierarchy facilitates variations in an encapsulation; however
when type-based switches are performed, the client code needs to be changed
whenever an existing abstraction is changed. Hence changeability and exten-
sibility of the software system are impacted. This smell can be refactored by
replacing the type-based switches to an inheritance hierarchy and polymorphic
methods [78].

Detection mechanism: We retrieve the list of types that are being ex-
plicitly checked in a method. We find the number of checked types that belong
to the same inheritance hierarchy. If the number is greater than one, we detect
this smell. The threshold value is chosen as greater than one because it doesn’t
make sense to detect the smell when there is only one subtype.

4.3.8 Broken Modularization

This smell arises when data and/or methods that ideally should have been
localized into a single abstraction are separated and spread across multiple
abstractions. When members that should be put together are scattered across
different abstractions, understanding all the methods and their functionality
is no longer easy. Furthermore, introducing changes and feature enhancements
becomes difficult because modifications may need to be made across several
abstractions. To eliminate the smell, it is required to put together the data
members and corresponding methods into a single abstraction by using a series
of “move method” or “move field” refactorings [78].

Detection mechanism: There are two variants of this smell [78]—classes
that are used as a holder of data members without corresponding methods and
methods in a class more interested in members of another class. We only detect
the first variant of the smell.

If a type doesn’t have any methods and count of fields and properties is
greater than a certain threshold (i.e., 5), we detect this smell. The additional
threshold (5) is applied to ensure that we don’t tag small classes as broken
modularization.
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4.3.9 Cyclically-dependent Modularization

This smell arises when two or more abstractions depend on each other directly
or indirectly creating a tight coupling between the abstractions. When a set
of abstractions are coupled together in a tangle, a change in one of these
abstractions may lead to a ripple effect across all the coupled classes. Hence,
it is difficult to understand as well as introduce new features or changes to the
classes belonging to the tangle. This smell can be refactored by breaking the
cycle by moving some of the fields or methods to another class [78].

Detection mechanism: We prepare a dependency graph of types from
their incoming and outgoing dependencies. We use this dependency graph to
detect direct or indirect cycles.

4.3.10 Hub-like Modularization

This smell arises when an abstraction has dependencies (both incoming and
outgoing) with a large number of other abstractions. Any change to an ab-
straction, on which many other abstractions depend, is difficult to change
because the change in the abstraction may lead to changes in the abstractions
that depend on this abstraction. Due to this reason, a hub class can be af-
fected by numerous other abstractions, and can, in turn, affect abstractions
that depend on that hub class. This coupling pattern makes the design with
hub classes prone to ripple effects impacting the changeability and extensibil-
ity of the design. The smell can be refactored either by splitting the hub class
using “extract class” or in some cases by applying “chain of responsibility”
pattern [78].

Detection mechanism: If both fan-out and fan-in metrics of a type are
greater than a threshold (i.e., 20), the type suffers from this smell. This thresh-
old is selected based on the recommended threshold by Ferreira et al. [18].

4.3.11 Insufficient Modularization

This smell arises when an abstraction exists that has not been completely de-
composed, and a further decomposition could reduce its size, implementation
complexity, or both. A large and complex implementation is difficult for de-
velopers to comprehend and change. A bloated interface, which is often the
case in this smell, is difficult to use by the client abstractions. Often, multiple
kinds of clients access the abstraction and hence a change in this abstraction
leads to breaking many of the client classes. The smell can be refactored by
segregating related members and extracting them into separate classes using
“extract class” refactoring [78].

Detection mechanism: There are three forms of this smell; hence, we
report this smell when even one of the below case is true.

– If the count of public methods in a type crosses a threshold (i.e., 20), the
type is suffering from insufficient modularization.
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– If the total methods in a type are more than a threshold (i.e., 30), we detect
this smell. We extrapolated the suggestion of Lippert et al. [45] of number
of classes in a component to the number of maximum desired methods in
a class.

– We compute Weighted Methods per Class (wmc) for each type. We detect
this smell if the value of the metric is more than a threshold (i.e., 100). The
threshold is chosen based on the recommendation by Herbold et al. [33].

4.3.12 Broken Hierarchy

This smell arises when a supertype and its subtype conceptually do not share
an “IS-A” relationship resulting in broken substitutability. When a supertype
and its subtypes do not honor “IS-A” relationship, clients of the abstractions
may attempt to assign objects of subtype to supertype references and may
expose to unexpected behavior. For example, invoking a method that is not
honored by a subtype object may lead to a runtime failure. This smell can be
refactored by applying “replace inheritance with delegation” refactoring [78].

Detection mechanism: The relation “IS-A” means that a type is a spe-
cialized version of its supertype. It implies that a subtype implements one
or more methods in a more specific way. Our detection mechanism uses this
implication to form the following heuristic. For each class that has at least
one super class with at least one public method, we check whether the class
satisfies the condition of broken hierarchy smell. If the class doesn’t have any
method overridden or “leniently” overridden from its super classes, we detect
the smell. A method is leniently overridden when the method name matches
(but not necessarily the parameter types) with any of the public methods
in the super classes; it is akin to method overloading within an inheritance
hierarchy.

4.3.13 Cyclic Hierarchy

This smell arises when a supertype in a hierarchy depends on any of its sub-
types. In the presence of this smell, any modification in subtypes may affect
supertypes that may, in turn, affect other subtypes of the hierarchy. Refac-
torings such as “move method” and “extract class” could be utilized to break
the cycle. Also, in some cases, it is feasible to merge both the subtype and
supertype into one type to remove the smell [78].

Detection mechanism: If a type accesses any of its subtypes, then we
detect this smell.

4.3.14 Deep Hierarchy

This smell arises when an inheritance hierarchy is excessively deep. With the
increase in the depth of a hierarchy, it gets difficult to predict the behavior of
the leaf classes since such classes inherit a large number of public and protected
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methods. Refactorings such as “collapse hierarchy” and “split hierarchy” could
be used to remove the smell [78].

Detection mechanism: We measure the Depth of Inheritance Tree (dit)
metric for each type. If the metric value crosses a threshold (i.e., 6), as rec-
ommended by Suryanarayana et al. [78], we detect this smell.

4.3.15 Missing Hierarchy

This smell arises when a code fragment uses conditional logic (typically in
conjunction with “tagged types”) to explicitly manage variation in behavior
where a hierarchy could have been created and used to encapsulate those
variations. It is easy to modify existing types and add support for new types
within the hierarchy when a hierarchy is encapsulating variation. However,
with type-based switches, the client code needs to undergo a change whenever
an existing type is changed. This smell can be refactored by applying “extract
hierarchy” refactoring [78].

Detection mechanism: We get a list of types checked explicitly in a
method, for example, by using instanceof operator. Then, if more than one
of the types in this list are not belonging to an inheritance hierarchy then we
conclude that an inheritance hierarchy is missing.

4.3.16 Multipath Hierarchy

This smell arises when a subtype inherits both directly as well as indirectly
from a supertype leading to unnecessary inheritance paths in the hierarchy.
Redundantly inherited supertype complicates the hierarchy leading to confu-
sion and in turn impacts readability and understandability quality attributes.
The smell can be refactoring simply by removing the unnecessary inheritance
paths in a hierarchy [78].

Detection mechanism: We derive a list of the direct super classes of a
class. We also retrieve all the ancestors of all the parents. If there is any type
common between these two lists, we conclude the presence of this smell.

4.3.17 Rebellious Hierarchy

This smell arises when a subtype rejects the methods provided by its super-
type(s). Rejecting methods from supertypes indicates that the subtype cannot
be safely replaced with a reference of supertype and hence violates the Liskov
substitution principle [55]. When the smell is present, the client of the abstrac-
tion may be surprised why the subtype objects do not behave as expected.
Furthermore, with this smell, clients cannot freely substitute supertype refer-
ences with subtype objects. This constraint leads to the tight coupling of client
code with the concrete types of the hierarchy and impacts the changeability
of the design [78].
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Detection mechanism: We check all the non-private methods in a class.
If any method is overridden and either the method is empty or has only state-
ment that throws an exception, we detect this smell.

4.3.18 Unfactored Hierarchy

This smell arises when there is unnecessary duplication among types in a
hierarchy. In the presence of this smell, a change in the clone code needs to be
replicated across all the associated clones. This constraint not only impacts
changeability of the system but also reliability (when the same change is not
done in other associated clones). This smell can be refactored by “pull-up
method” refactoring to remove the duplicates within a hierarchy [78].

Detection mechanism: We detect this smell when we find code clones
in sibling types (where the classes share supertype).

4.3.19 Wide Hierarchy

This smell arises when an inheritance hierarchy is too wide indicating that in-
termediate types may be missing. In the absence of intermediate abstractions,
the sibling classes are not the same level of abstraction. That makes it difficult
for programmers to understand the sibling classes since some classes are too
high-level while others are at a low-level of abstraction. Furthermore, the smell
affects the extensibility of the hierarchy due to missing “hook points” facil-
itated by a properly designed hierarchy. A common strategy to remove the
smell is to apply “extract superclass” refactoring to introduce intermediate
abstractions [78].

Detection mechanism: We compute the Number of Children (nc) met-
ric for each type. If the value of the metric crosses a threshold (i.e., 10), as
recommended by Suryanarayana et al. [78], we detect this smell.

5 Study Design

We define five research questions exploring the relationship between architec-
ture and design smells. In order to provide answers to the research questions,
we specify a protocol to select and download open-source repositories. We an-
alyze the downloaded repositories using Designite [71,76]—our smell detection
tool that we use in this study.

5.1 Research Questions

Building on the motivation and the background, we compose five research
questions to explore the relationships between architecture and design smells.
Figure 2 puts together the research questions pictorially.
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Fig. 2: Overview of the research questions

RQ1. Which architecture smells are more prominent in open-source
C# repositories?
RQ1 aims to identify whether a specific sub-set of considered architecture
smells is more prevalent in the analyzed open-source software repositories.
The answer to RQ1 may caution the developers about a set of architecture
smells expected to have more chances of occurrence and prompts them to
take precautionary measures.

RQ2. Is architecture smell density affected by the size of the repos-
itories?
It is commonly believed that the complexity of a software system increases
with the size of the system. In this research question, we aim to analyze
whether the density of architecture smells increases or decreases with the
increase in the system size. Smell density [74, 75] is a normalized metric
that represents the average number of smells identified per thousand lines
of code.

RQ3. Are detected architecture smell instances correlated with de-
sign smells instances?
RQ3 explores how the architecture smells correlate with design smells.
First, we consider the cumulative values of both kinds of smells (architec-
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ture and design). A strong correlation between kinds of code smells would
encourage us to understand the occurrence patterns and provide valuable
insights into the similarity between these pairs.
Further, we also investigate the correlation between individual design smells
and architecture smells. This would help us to find out whether there exist
specific types of design smells that are strongly correlated to specific types
of architecture smells.

RQ4. Are architecture smells collocated with design smells?
RQ4 aims to explore whether architecture and design smell occur at the
same location (i.e., classes) within the source code. A positive result of the
collocation analysis would establish a strong relationship between architec-
ture and design smells.
Apart from exploring collocation cumulatively between both kinds of smells,
the question investigates the collocation relationships between individual
pairs of design smells and architecture smells. This would help us to fig-
ure out whether and to what extent specific design smells show collocation
with architecture smells.

RQ5. Do design smells cause architecture smells (or vice-versa)?
This research question extends the relationship analysis beyond correlation
and collocation and explores whether design smells “cause” architecture
smells or vice-versa. A smell d causes smell a if predictions of the values
of a based on its own past values and on the past values of d are better
than the predictions of a calculated only using its own past values [30].
It would reveal the degree of influence that design smells have on architec-
ture smells (and vice versa). A high influence would hint that by carrying
out a suitable refactoring early during the evolution of the software may
lead to fewer smells at the different granularity.

To address the research questions defined above, we design an experimental
setup, perform the experiments, extract the required data, and document our
inferences and observations.

5.2 Downloading Subject Systems

We used the following protocol to identify our subject systems.

– We use RepoReapers [61] to filter out low-quality and too small reposi-
tories among the abundant repositories present on Github. RepoReapers
analyzed a huge number of GitHub repositories and evaluated each of the
repositories on eight dimensions providing a fair idea about their qual-
ity characteristics. These dimensions are architecture (as evidence of code
organization), continuous integration and unit testing (as evidence of qual-
ity), community and documentation (as evidence of collaboration), history,
issues (as evidence of sustained evolution), and license (as evidence of ac-
countability). A repository scoring low on these dimensions are indeed of
low quality compared to a repository scoring high on the same dimensions.
RepoReapers assigns a score corresponding to each dimension.
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– We select all the repositories containing C# code where at least six out of
eight RepoReapers’ dimensions have suitable scores. We consider a score
suitable if it has a value greater than zero. Values of some of the dimensions
(architecture, documentation, issues, and unit test) range between 0 and 1,
some other dimensions (license and continuous integration) may take either
0 or 1. Only dimensions history and community may take values minimum
0 to more than 1. Our goal was to filter out poor quality repositories and
hence we selected the criteria where we consider values greater than zero as
favorable values. Our choice of C# is motivated by the fact that a large part
of the academic literature focuses on subject systems written in the Java
programming language. It is desirable that we, as the research community,
diversify our explorations and generalize our research. Our choice of C# is
an attempt to fill the gap as empirical studies in programming languages
other than Java.

– Next, we sort the repositories based on the number of assigned stars. We
select repositories tagged with more than 10 stars.

– Following these criteria, we download and analyze more than 3 400 repos-
itories using Designite (version 3.4.0). We could not analyze some of the
repositories due to either missing external dependencies or custom build
mechanisms (i.e., missing standard C# project files). We successfully an-
alyze 3 073 repositories.

– Software test code contains different types of smells (i.e., test smells [17])
which is not in the scope of this paper. Hence, we exclude the test code
belonging to the selected software repositories from our empirical analysis.

A complete list of the selected C# repositories along with their analyzed
results can be found online [72]. Table 2 presents some key characteristics of
the selected subject systems.

Table 2: Characteristics of the Analyzed Repositories

Attributes Values
Repositories 3 073
Components 114 706
Types 1 120 960
Methods 5 545 197
Lines of code (C# only) 118 699 236

5.3 Tool Support—Designite

Designite [71,76] is a software design quality assessment tool for software sys-
tems written in C# programming language. The tool supports detection of 19
design and 11 implementation smells. For the purpose of this study, we imple-
mented support to detect seven architecture smells within the tool. Apart from
its gui-based desktop application, Designite also offers a console application
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which is particularly useful for analyzing a large number of repositories auto-
matically. Customization is one of the major features of the tool—a user can
customize the way input source code is provided to the tool, certain smells to
skip in an analysis session, or change thresholds that are used to detect certain
smells. The tool offers free Academic licenses for all academic purposes.

The selection of smells to support is based on the commonality of these
smells in the software engineering literature. Specifically, many authors have
defined, discussed, and detected commonly occurring design smells; a mature
consolidated catalog is proposed by Suryanarayana et al. [78]. Designite im-
plements 19 out of the 25 design smells presented in the catalog. Similarly,
we implemented architecture smells commonly discussed by the software en-
gineering community [2, 8, 24,45,74].

5.3.1 Manual validation

We conducted a manual validation to establish the accuracy of the tool. We
chose a project DotNetOpenAuth.Core from a well-known open-source repos-
itory DotNetOpenAuth9 for the purpose. The selected project contains 16 663
loc, 136 types, and 7 components. We sought help from two volunteers to
carry out manual validation—one volunteer works in a software development
company (three years of industry experience) and another volunteer is a Ph.D.
student with one year of industry experience. Both the volunteers did not work
of the analyzed repository in advance; however, they have hands-on experience
on working with complex industrial solutions and have a fair idea of software
architecture and code smells.

We enforced the following protocol for the validation.

– Each volunteer carried out the initial manual analysis individually without
discussing it with another volunteer.

– Given their industry experience, they were aware of the basic concept of
code smells and commonly known smells. Each volunteer picked all the
considered design and architecture smells one by one and understood the
semantics of the smell. We provided additional material to make their
learning faster.

– Both the individuals went through all source code files one by one and
checked the existence of each smell following the definition of each smell.

– While identifying smells, they were allowed to use ide features such as go
to definition and list all references as well as metrics generated from other
tools.

– Once both the volunteers completed the analysis, the volunteers discussed
their results, sorted out differences, and prepared a consolidated mutually
agreed results. The consolidated results had 52 design and 18 architecture
smells.

– At this point, they used Designite and analyzed the considered project and
obtained a list of design and architecture smells.

9 https://github.com/DotNetOpenAuth/DotNetOpenAuth
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– They compared the results obtained from the tool with their set of smells
and tagged them as true-positive, false-positive, and false-negative. During
this categorization, they observed that a subset of smells is identified by
the tool which was not revealed by their manual analysis. They analyzed
each of the smells in the subset and categorized them as well similar to the
rest of the smells.

Table 3 presents the result of the manual validation showing smell instances
detected by Designite and the consolidated set of smells identified by the volun-
teers. The table also shows number of false-positives and false-negatives that
we found in this validation. The detailed report showing individual smells
along with the names of each component or class where they occur along with
corresponding classification can be found online [73].

Interestingly, volunteers could not find all the legitimate smells manually;
though, when the tool reported these instances, they classified them as true-
positive. The highest number of smells that were missed by the volunteers are
cyclically-dependent modularization and cyclic dependency. In this context,
the volunteers found only unit-cycles i.e., cycles involving only two classes or
components. However, the tool reported cycles with different lengths. Volun-
teers verified all of these non-unit cycles and found them as true-positive. It
implies that many smells go unnoticed even one actively looks for them; this
observation emphasizes the importance of using tools.

The tool reported two false-positive instances of unutilized abstraction.
Both of the instances are reported for exception types i.e., classes that de-
fine custom exceptions. The tool could not resolve such instances of the types
when they are thrown from a return statement.

The tool also failed to detect one instance of broken modularization smell.
The volunteers classified the smell because the class only has a few data mem-
bers and an empty constructor. However, due to the presence of the construc-
tor, the tool did not identify the smell.

We compute precision and recall exhibited by the tool in the following way.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Here, tp, fp, and fn refer to true-positive, false-positive, and false-negative
instances. Based on the above analysis, we obtain precision = 117/(117+4) =
96.6% and recall = 117/(117 + 1) = 99.1%.

5.4 Overview of the Method

Figure 3 presents an overview of our experimental setup. The software reposi-
tories selected using RepoReapers are downloaded from GitHub. These reposi-
tories are then fed to Designite to identify smells that are exported in the form
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Table 3: Results of Manual Validation

Smells Designite Manual TP FP FN
Broken Hierarchy 2 1 1 1 0
Broken Modularization 2 3 2 0 1
Cyclically-dependent Modularization 34 34 34 0 0
Duplicate Abstraction 9 9 9 0 0
Hub-like Modularization 1 1 1 0 0
Imperative Abstraction 9 9 9 0 0
Insufficient Modularization 5 5 5 0 0
Multipath Hierarchy 1 1 1 0 0
Rebellious Hierarchy 2 2 2 0 0
Unnecessary Abstraction 20 19 19 1 0
Unutilized Abstraction 5 3 3 2 0
Wide Hierarchy 4 4 4 0 0
Cyclic Dependency 13 13 13 0 0
Unstable Dependency 4 4 4 0 0
God Component 1 1 1 0 0
Feature Concentration 5 5 5 0 0
Scattered Functionality 3 3 3 0 0
Dense Structure 1 1 1 0 0

121 118 117 4 1

of csv files. We perform statistical analysis—specifically, correlation analysis
(Spearman), Granger causality, and phi-coefficient using contingency matrix
to answer the addressed research questions on the detected instances of archi-
tecture and design smells. We then infer, document, and present observations
based on the results of our analysis.

6 Results

This section presents the results along with our observations corresponding to
each research question addressed in this study.

RQ1. Which architecture smells are more prominent in open-source
C# repositories?

Approach: Designite offers a console application along with its GUI-based
application to enable large-scale analysis. We use the console application and
analyze each downloaded repository. The tool provides detected design and
architecture smells in separate csv files for each analyzed repository. We sum-
marize the detected smells and compute the total number of detected smell
instances for all the architecture smells.
Results: Table 4 lists the total number of architecture smells in all the an-
alyzed repositories. The table reveals that the cyclic dependency is the most
frequently occurring architecture smell followed by feature concentration smell.
One potential reason for cyclic dependency to occur in a high volume is the
permutations of the cycles due to one dependency that is mainly responsi-
ble for introducing a cycle. For example, Figure 4 shows dependencies among
four components viz. Documentation (D), Semantics (S), TypeSystem (T),
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Fig. 3: Overview of the Method

and TypeSystem.Implementation (I) of ICSharpCode.NRefactory project10.
These four components have four unit cycles i.e., cycles containing exactly
two components; however, permutations of components forming a cycle hav-
ing more than two components lead the tool to report eight cyclic dependency
architecture smell instances in this project. The tool discards repeating sub-
sequences and cycles more than the length of five.

10 https://github.com/icsharpcode/NRefactory
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Fig. 4: Dependencies among four components of NRefactory

Table 4: Number of detected instances and smell density (per kloc) of archi-
tecture smells in the analyzed repositories

Architecture smell #Instances Smell density
Cyclic Dependency 47 270 0.398
Feature Concentration 23 483 0.198
Scattered Functionality 20 170 0.170
Unstable Dependency 11 823 0.099
God Component 6 758 0.057
Ambiguous Interface 1 223 0.010
Dense Structure 144 0.001

The dense structure smell has been detected the least number of times
among the detected smells. This can mainly be attributed to the fact that, by
definition, the smell can be detected at most once in a repository while all other
architecture smells can be spotted multiple times in a repository. Along the
same lines, the ambiguous interface smell occurs occasionally because often a
component has multiple interfacing points and extra effort is required to make
a component offer only one entry-point.

Apart from the number of detected instances of architecture smells, we
present the total detected instances of design smells in the analyzed reposito-
ries in Table 5. At design granularity, cyclically-dependent modularization and
unutilized abstraction are the most frequently occurring smells.

Both feature concentration and multifaceted abstraction capture the cohe-
sion aspect. The difference between them is that feature concentration happens
when a set of classes within an architectural component do not follow the single
responsibility principle (srp) whereas multifaceted abstraction smell arises due
to the violation of the same principle among the methods of a class. Surpris-
ingly, feature concentration smell occurs more often at architecture
granularity (20% of the components) than its design granularity
counterpart —multifaceted abstraction (0.3% of all the types). This
indicates that components are more prone to violate the single responsibility
principle than the classes at design granularity. Therefore, the software devel-
opers must pay attention to the component composition and cohesion when
they extend a component.

Similarly, god component and insufficient modularization smells violate the
principle of modularization at architecture and design granularity respectively.
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Table 5: Number of detected instances and smell density (per kloc) of design
smells in the analyzed repositories

Design smell #Instances Smell density
Cyclically-dependent Modularization 224 218 1.888
Unutilized Abstraction 194 852 1.641
Duplicate Abstraction 165 558 1.394
Unnecessary Abstraction 157 619 1.327
Deficient Encapsulation 73 591 0.619
Insufficient Modularization 57 698 0.486
Broken Hierarchy 48 485 0.408
Broken Modularization 45 771 0.385
Unfactored Hierarchy 41 387 0.348
Rebellious Hierarchy 40 848 0.344
Imperative Abstraction 20 023 0.168
Cyclic Hierarchy 16 260 0.136
Unexploited Encapsulation 13 463 0.113
Wide Hierarchy 6834 0.057
Multipath Hierarchy 6 269 0.052
Missing Hierarchy 3 296 0.027
Multifaceted Abstraction 3 166 0.026
Hub-like Modularization 1 509 0.012
Deep Hierarchy 630 0.005

We observe that both of these smells show similar occurrence frequency; 6%
and 5% of the components and types respectively suffer from god component
and insufficient modularization smells.

In summary, cyclic dependency and feature concentration are
the two most frequently occurring architecture smells. It is recom-
mended for developers to avoid cycles among components and make
components cohesive to increase maintainability of their software
systems.

RQ2. Is architecture smell density affected by the size of the repos-
itories?

Approach: Smell density [74, 75] is a normalized metric that represents the
average number of smells identified per thousand lines of code. We obtain a
total number of lines of code as well as total number of architecture smells for
each repository from the results produced by the tool. Using this information,
we compute architecture smell density for all the analyzed repositories indi-
vidually. We also compute the Spearman correlation coefficient between the
architecture smell density and the repository size (in loc).

Results: We would like to observe how architecture smell density changes
with the repository size. Figure 5a shows a scatter plot between architecture
smell density and loc of repositories. A Spearman correlation (ρ) value of
0.2140 (with p-value < 2.2e − 16) shows no correlation between architecture
smell density and loc. Similarly, analyzing the correlation between design
smell density and loc gives us a value of −0.0758 (with p-value < 2.2e− 16)
(refer to Figure 5b).
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The results indicate that the size of a project has no impact on
the smell density of the project.
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Fig. 5: Architecture/design smell density vs loc

RQ3. Are detected architecture smell instances correlated with de-
sign smells instances?

Approach: We compute the total number of smell instances belonging to
each smell type individually—let us say A (total architecture smell instances)
and D (total design smell instances) for each repository. We then find the
Spearman correlation between the series of A and D. Further, we computed
the total number of smell instances for each architecture (referred to as Ai

where i may take values from 1 to 7 representing each architecture smell
analyzed) and design (referred to as Dj where j may take values from 1 to
19 representing each design smell analyzed) smell. We calculate the Spearman
coefficient between the individual pairs of architecture and design smells, i.e.,
between each pair of Ai and Dj for all possible values of i and j, to observe
the fine-grained correlation between architecture and design smell pairs.

Results: The number of detected instances of architecture and design smells
exhibit a very high Spearman correlation coefficient (ρ) value of 0.8494 (with
p-value < 2.2e − 16). Figure 6 shows a scatter plot between total detected
instances of architecture and design smells in each repository. This indicates
that architecture smells exhibit strong positive correlation with de-
sign smells. Therefore, it can be inferred that a large population of design
smell instances present in a repository is associated with the presence of a
high number of architecture smell instances and vice-versa. These observa-
tions might encourage a software developer to find and refactor architecture
smells when she finds a large number of design smells in her software system.

To find deeper and fine-grained relationships, we compute Spearman cor-
relation coefficients between individual design smells and architecture smells.
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Fig. 6: Scatter plot between number of architecture smells and design smells

Figure 7 presents Spearman correlation coefficient values for all 133 architecture-
design smell pairs in a heatmap. The darker color of a cell in the heatmap shows
a stronger correlation. A cell with coefficient value in the red color shows sta-
tistically insignificant values (p-value ≥ 0.005).

The heatmap shows strong correlation for many smell pairs. Feature con-
centration and unutilized abstraction show the strongest individual correlation
(0.83). We discussed a real-world example discussing the relationship between
the two smells in Section 2. Smell pair feature concentration and unneces-
sary abstraction also shows a high correlation as the presence of unnecessary
abstraction instances increases the chance of detecting feature concentration
smell. Similarly, other pairs of smells that show high correlation are: god com-
ponent and insufficient modularization and cyclic dependency and cyclically-
dependent modularization. On the other hand, ambiguous interface and dense
structure at architecture granularity and deep hierarchy at the design granu-
larity show the least correlation with other smells.

The high correlation between cumulative as well as individual
pairs of design and architecture smells indicates that a software de-
veloper must pay attention to the quality at architecture (or design)
granularity if she perceives high number of smells at design (or ar-
chitecture) granularity.

RQ4. Are architecture smells collocated with design smells?

Approach: Architecture and design smells differ in granularity, hence they
get reported in a set of components and a set of classes, respectively. To an-
alyze whether both kinds of smells are collocated, we identify a set of partic-
ipating classes for each architecture smell. A participating class contributes
non-trivially to the occurrence of an architecture smell instance. Specifically,
a design smell instance d and architecture smell instance a are considered to
be “collocated” if a class reported by the instance d participates in instance
a.

We created a table containing all the classes belonging to all the analyzed
repositories with their corresponding total architecture and design smell in-
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Fig. 7: Spearman correlation coefficients between individual architecture and
design smells

stances. We created 2 × 2 contingency matrices for both the smell categories
and compute phi-coefficient. The value of phi-coefficient measure the degree
of association between two variables [15].

We analyzed cumulative instances of both smell categories as well as 133 in-
dividual smell pairs. Naturally, the frequency of architecture and design smells
are not the same due to the difference in granularity and scale; thus the number
of architecture smells is significantly lower than the number of design smells
instances. We have to normalize both the numbers for semantically correct
analysis and therefore we normalize the number of design smells by multiply-
ing the ratio of specific design and architecture smells.

Table 6: Contingency matrix for a design and architecture smell

Design smell
1 0

Architecture smell
1 a b
0 c d
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Table 6 shows the contingency matrix for a design and architecture smell
pair. The values of variables a, b, c, and d are used to compute the phi-
coefficient [15]. However, as described above, we normalize the number of de-
sign smells instances i.e., c.

c′ = c× Number of architecture smells

Number of design smells
(6)

We compute phi-coefficient using the following equation.

φ =
a× d− c′ × b√

(a+ b)× (c′ + d)× (a+ c′)× (b+ d)
(7)

Inferring participating classes:
To perform the collocation analysis between architecture and design smell in-
stances, we identify participating classes for each architecture smell. A partici-
pating class contributes to the architecture smell non-trivially. We formulated
and implemented the following rules to infer participating classes for each
architecture smell.

Cyclic dependency: For each identified cycle, we find the classes (belonging
to each component contributing to the formation of the cycle) that participate
in the cycle. We include all these classes to the participating classes list.

Unstable dependency: This smell occurs when a component depends on
another component which is less stable than itself. In this case, all the classes
that refer to classes of a less stable component are the participating classes for
this smell.

Ambiguous interface: We detect the smell when a component has only one
public or internal method. We assign the class that has the public or internal
method as the participating class for the architecture smell.

God component: The tool detects two variants of this smell. First, using
loc-based detection where loc of the component crosses a threshold and
second, using noc-based detection where the number of classes in the compo-
nent crosses a threshold. We include all the classes of the component as the
participating classes.

Feature concentration: We detect the smell when a component is realizing
more than one responsibility. We include all the classes of the component as
the participating classes for the smell.

Scattered functionality: In this smell, classes scattered in multiple compo-
nents realize the same architectural concern. We identify all these classes and
tag them responsible for this architecture smell.

Dense structure: We identify all classes that refer to at least one class
belonging to another component (hence contributing to the degree of the host
component). We include all of the identified classes as the participating classes
for the architecture smell.

Results: We obtained φ = −0.14 as the value of phi-coefficient computed for
cumulative values of design and architecture smells for each type. The value of
phi-coefficient indicates that design and architecture smells do not collocate.
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We also compute phi-coefficients for individual architecture and design smell
pairs. Figure 8 shows collocation analysis heatmap of architecture and design
smells. Each cell shows the computed phi-coefficient for an architecture-design
smell pair.
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Fig. 8: Collocation analysis between individual architecture and design smell
pairs

Phi-coefficient between cyclically-dependent modularization and dense struc-
ture shows the highest collocation. It is logical because cycles between classes
increase the complexity of software’s dependency graph and degree of compo-
nents that in turn leads to dense structure smell. Similarly, the phi-coefficient
between feature concentration and unutilized abstraction shows relatively high
collocation. This collocation makes sense because the presence of one or more
unutilized abstractions increases the value of lcc for a component. This in-
creased value of lcc, in turn, leads to feature concentration smell as discussed
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in the detection mechanism for the smell (Section 4.2). We discussed a concrete
example of collocation between feature concentration and unutilized abstrac-
tion in Section 2. Along the expected lines, cyclically-dependent modulariza-
tion design smell shows relatively higher collocation with cyclic dependency
architecture smell.

Apart from a few smell pairs, rest of the smells pairs show low
values of collocation coefficient. The low collocation values suggest
that majority of architecture and design smells do not collocate with
each other.

We present an example of collocation of feature concentration architecture
smell and cyclically-dependent modularization design smell. The component
ICSharpCode.NRefactory in NRefactory11 project contains ten classes/interfaces.
As explained in Section 4.2, we identify disconnected dependency graphs within
a component and compute lcc. Figure 9 shows the identified disconnected
dependency graph where each box encapsulates a set of related classes. The
computed lcc is 0.5 that makes the component suffering from feature con-
centration smell. This component also reports a cyclically-dependent modu-
larization design smell between TextLocation and TextLocationConverter

classes (shown with red background).

ICSharpCode.NRefactory

IAnnotable
AbstractAnnotable
AnnotationList

Role
Role<T>

TextLocation
TextLocationConverter

UnicodeNewLine
NewLine

EmptyList<T>

Fig. 9: Feature concentration smell identified for the
ICSharpCode.NRefactory component; the smell is collocated with
cyclically-dependent modularization design smell (between TextLocation and
TextLocationConverter classes)

RQ5. Do design smells cause architecture smells (or vice-versa)?

Approach: To further expand the analysis exploring the relationship between
architecture and design smells, we explore the causality relationship between
them.

We use the mechanism proposed by Granger [30] to figure out whether
two random variables are associated with a causality relationship. We chose
Granger’s method to analyze causality relationship because the method has
been used by other similar studies [12,13]. Specifically, Palomba et al. [67] have

11 https://github.com/icsharpcode/NRefactory
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used the same method in their exploration to study co-occurrences among code
smells.

Equation 8 presents Granger’s method mathematically. Architecture and
design smell instances computed over a period of time represent two time-
series A and D respectively. A variable d, representing design smell instances
at time t, causes variable a, representing architecture smell instances at time
t, if the predictions of variable a with the past values of both a as well as d
are better than the predictions using only the past values of a. The following
equation expresses the above intuition mathematically.

a(t) =

k∑
j=1

f(a(t− j)) +

k∑
j=1

f(d(t− j)) (8)

To carry out the causality analysis, we required time-series data of design
and architecture smell instances detected for many versions belonging to a
repository. We chose five repositories from our selected collection of repositories
(refer to Section 5.2) with the highest number of commits. These repositories
were chosen to maximize the chances of getting a sufficiently long time-series
to carry out the analysis.

It is prohibitively resource-intensive to analyze all commits of a repository
(one of the repositories contains close to 65 thousand commits). To select a
subset of these commits, a naive way could have been to select a predefined
number of commits equally divided on the temporal dimension. For instance,
Couto et al. [12] select commits at every two-weeks temporal distance. How-
ever, this mechanism would result in a set of commits that missed some com-
mits with many changes and included commits that are superfluous i.e., very
similar to other commits. We propose a new mechanism to identify commits
that need to be analyzed to produce a time-series for our causality analysis,
based on a divide and conquer strategy.

Algorithm 1 presents the pseudo-code that we employed to select a set of
commits for the analysis. It starts with the first and the last commit by in-
cluding them in the selected commits. It then checks whether the commit in
the middle of both the start and end commits should be included for the anal-
ysis. The algorithm includes the middle commit if the commit is significantly
different than the start or end commit. A commit is significantly different than
another commit if the number of classes that are different from one commit to
another crosses a threshold (we used 20% as the threshold value). We decide
a class in a commit is different than the class with the same name in another
commit if both of these classes have different values for at least one of these
metrics: weighted methods per class (WMC), number of children (NC), lack
of cohesion in methods (LCOM), Fan-in, and Fan-out. If the algorithm finds
a commit significant, then it looks for other commits that need to be included
recursively by finding the next middle commit. We verified implementation of
the algorithm by manually checking the produced results at each intermediary
step to ensure the correctness of the algorithm.
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Input: Path of a repository
Output: Selected commits
begin

allCommits = GetAllCommitHash(repositoryPath)
selectedCommit.Add(0)
AnalyzeCommit(allCommits[0])
lastCommitIndex = allCommits.Size − 1
selectedCommit.Add(lastCommitIndex)
AnalyzeCommit(AllCommits[lastCommitIndex])
FindIntermediateCommits(allCommits, 0, lastCommitIndex, ‘f’)

end

FindIntermediateCommits()

Input: all commits, startIndex, endIndex, direction
Output: Selected commits
begin

if endIndex ≤ startIndex then
return

end
nextCandidate = (startIndex + endIndex) / 2
if nextCandidate ≤ startIndex or nextCandidate ≥ endIndex then

return
end
AnalyzeCommit(allCommits[nextCandidate])
if direction = ‘f’ then

isSignificant = IsDifferenceSignificant(allCommits[startIndex],
allCommits[nextCandidate])

else
isSignificant = IsDifferenceSignificant(allCommits[nextCandidate],

allCommits[endIndex])
end
if isSignificant then

selectedCommits.Add(nextCandidate)
FindIntermediateCommits(allCommits, startIndex, nextCandidate, ‘f’)
FindIntermediateCommits(allCommits, nextCandidate, endIndex, ‘b’)

end

end

IsDifferenceSignificant()

Input: commit1, commit2, threshold
Output: True/False
begin

changedClasses = 0
for each class c in commit1 and commit2 do

metrics1, metrics2 = ReadMetrics(GetClass(c, commit1), GetClass(c,
commit2))

if metrics1 6= metrics2 then
changedClasses += 1

end

end
changeRatio = changedClasses/totalClasses
if changeRatio ≥ threshold then

return True
else

return False
end

end

Algorithm 1: The proposed algorithm to select commits for analysis
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We analyzed each of the five repositories and present here the results from
one repository, RavenDB,12 with the largest number of significant commits.

It is mandatory to ensure the stationary property of a time-series before
analyzing it and drawing conclusions based on that. A time-series is station-
ary if its statistical properties such as mean, variance, and autocorrelation are
constant over time [14]. If a time-series is non-stationary, it shows seasonal
effects, trends, and fluctuating statistical properties changing over time. Such
effects are undesired for the causality analysis and thus a time-series must be
made stationary before we perform the causality analysis. We carried out the
augmented Dickey-Fuller unit root test [27] to check the stationary property
of our time-series. Initially, our time-series was non-stationary. There are a few
techniques to make a non-stationary time-series a stationary one [40]. We ad-
dressed this issue by applying a difference transformation, i.e., subtracting the
previous observation from the present observation for all columns. Techniques
such as differencing, that we applied, help stabilize the mean of a time series
by removing changes in the time series, and therefore eliminate or reduce the
non-stationary nature of the series. This transformation resulted in a station-
ary time-series that we confirmed by performing the augmented Dickey-Fuller
unit root test again. We carried out the causality analysis on the cumulative
sum of all design and architecture smells for each analyzed commit as well as
on individual types of design and architecture smells.

Results: We first compute the Granger causality between cumulative values of
design and architecture smells. Table 7 presents the results of the causality test.
The p-values shown in each cell show the causality from column to row. The
table shows that design smells cause architecture smells with significant p-value
(i.e., less than 0.005). Time-series obtained from analyzing other repositories
also confirm the observation. For instance, causality analysis on Umbraco-
CMS13 repository also shows that design smells cause architecture smells with
p-value 0.0036 while cumulative architecture smells do not decisively cause
design smells with p-value 0.3593.

Table 7: Causality test results (p-values) between cumulative values of design
and architecture smells

Architecture smells Design smells
Architecture smells 1 0.0001
Design smells 0.2669 1

We also carried out causality analysis at individual smell granularity. Ta-
ble 8 shows p-values corresponding to the causal effect of individual design
smells on architecture smells, where the blue-colored cells indicate a significant
causal relationship. It is interesting to note that cyclically-dependent modular-
ization appears to cause all architecture smells. Also, smells such as hub-like

12 https://github.com/ravendb/ravendb
13 https://github.com/umbraco/Umbraco-CMS
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Table 9: Causality test results (p-values) showing individual architecture smells
causing design smells
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Imperative Abstraction 0.724 0.649 0.737 0.882 0.479 0.875 0.000
Unnecessary Abstraction 0.000 0.000 0.549 0.834 0.952 0.255 0.041
Multifaceted Abstraction 0.007 0.144 0.387 0.121 0.237 0.086 0.025
Unutilized Abstraction 0.000 0.000 0.273 0.844 0.732 0.207 0.641
Duplicate Abstraction 0.024 0.000 0.543 0.889 0.826 0.314 0.722
Deficient Encapsulation 0.001 0.115 0.164 0.317 0.379 0.200 0.702
Unexploited Encapsulation 0.001 0.006 0.058 0.728 0.701 0.631 0.002
Broken Modularization 0.110 0.006 0.285 0.889 0.701 0.197 0.297
Insufficient Modularization 0.001 0.050 0.244 0.740 0.926 0.336 0.005
Hub-like Modularization 0.000 0.061 0.092 0.429 0.584 0.841 0.792
Cyclically-dependent Mod. 0.700 0.085 0.001 0.334 0.233 0.171 0.000
Wide Hierarchy 0.185 0.203 0.217 0.644 0.446 0.284 0.435
Deep Hierarchy 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Multipath Hierarchy 0.002 0.001 0.177 0.600 0.335 0.362 1.000
Cyclic Hierarchy 0.895 0.090 0.004 0.728 0.123 0.053 0.305
Rebellious Hierarchy 0.000 0.002 0.385 0.865 0.824 0.231 0.214
Unfactored Hierarchy 0.450 0.492 0.003 0.430 0.562 0.013 0.966
Missing Hierarchy 0.523 0.245 0.038 0.837 0.175 0.030 0.001
Broken Hierarchy 0.873 0.171 0.000 0.898 0.852 0.009 0.966

modularization and multipath hierarchy also contribute towards causing three
kinds of architecture smells each. On the other hand, many smells such as
deficient encapsulation, multifaceted abstraction, and unutilized abstraction do
not cause any architecture smell. Deep hierarchy smell was not detected in the
repository and hence its degree of involvement in causing architecture smells
cannot be determined.

We also performed causality analysis in the opposite direction i.e., explor-
ing whether architecture smells cause design smells at the individual level.
Table 9 shows the results of the analysis. Unsurprisingly, the cyclic depen-
dency causes eight kinds of design smells. God component, feature concentra-
tion, and scattered functionality architecture smells do not contribute at all
towards causing design smells. It is interesting to note that only multifaceted
abstraction smell neither causes any architecture smell nor is it caused by any
architecture smell.

In summary, we found that design smells cumulatively cause ar-
chitecture smells. This implies that the current set of architecture
smells in software systems are present due to smells at both design
and architecture granularity in the previous versions of the software.
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Next, we present couple of examples demonstrating design smells causing
architecture smells as a software system evolves. Both the examples presented
below are observed from the RavenDB repository; we analyzed many commits
of the repository for the causality analysis.

As Table 8 shows, cyclically-dependent modularization exhibits the highest
causality on architecture smells among all analyzed design smells. The fol-
lowing example shows how an instance of cyclically-dependent modularization
that arose in one version leads to cyclic dependency architecture smell in a
subsequent version of the software system. Figure 10 shows a design fragment
where rounded-corner rectangles represent components and rectangles inside
them represent classes belonging to the components. Orange arrows show de-
pendencies between classes and black arrows show dependencies between com-
ponents.

We observe that in a commit (ending with commit-hash bfacefcb), a
cyclically-dependent modularization design smell has been detected among five
classes. In this commit, components Serialization, Utilities, and Linq

are not forming a cycle and hence no cyclic dependency architecture smell
involving these components is reported. However, in the next commit (ending
with commit-hash 8cd11cff), a class JPath in Linq component refers to a
class in Serialization component and hence introduces a dependency be-
tween the components (shown by a red arrow in Figure 10b). It is important
to note that source code changes carried out specifically in this commit do
not introduce a cycle among architecture components. However, due to an
existing cycle among other classes and components that was created in the
last commit, a new cycle among the three components (i.e., Serialization,
Utilities, and Linq) is formed and reported in this commit. In other words,
cyclically-dependent modularization design smell detected in the previous ver-
sion caused a cyclic dependency architecture smell in this version.

Raven.Imports.Newtonsoft.Json.Utilities

Raven.Imports.Newtonsoft.Json.Serialization

Raven.Imports.Newtonsoft.Json.Linq

DynamicUtils

JsonDynamicContract

DefaultContractResolver

JsonTypeReflectorRaven.Imports.Newtonsoft.Json

MemberSerialization

(a)

Raven.Imports.Newtonsoft.Json.Utilities

Raven.Imports.Newtonsoft.Json.Serialization

Raven.Imports.Newtonsoft.Json.Linq

DynamicUtils

JsonDynamicContract

DefaultContractResolver

JsonTypeReflectorRaven.Imports.Newtonsoft.Json

MemberSerialization

JPath

(b)

Fig. 10: cyclically-dependent modularization smell in version k leading to cyclic
dependency architecture smell in version k+1. Dependencies between classes
are shown by using orange arrows; black arrows show dependencies between
components. Red arrow shows a new dependency that completes a cycle among
three components.
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Similarly, we discuss below how unnecessary abstraction design smell de-
tected in a version caused god component architecture smell in the follow-
ing versions of the software system. In a commit (ending with commit-hash
77ee97d8), component Newtonsoft.Json.Utilities gets detected with four
instances of unnecessary abstraction design smells; the component contains a
total of 29 classes in the commit. However, in the following commit (ending
with commit-hash ece305f5), the component introduces a few classes and the
total number of classes reaches 32. Due to this increase, a god component ar-
chitecture smell is detected in the component. However, we can infer that this
instance of god component would not arise if the unnecessary abstraction smell
instances were not detected in the previous commit. In summary, unnecessary
abstraction smell instances detected in the previous commit caused the god
component architecture smell instance in this commit.

7 Discussion and Implications

In this section, we provide interpretations of our findings. Our results reveal the
individuality of smells at the explored granularities. In our context, individual-
ity refers to the uniqueness of the smells showing differentiating characteristics
than other smells. We also discuss the scope of each of the relationships ex-
amined in this work and the interplay among themselves. In the implication
section, we emphasize that smells often occur independently at each granular-
ity and software development teams must address them at all granularities.

7.1 Interpretations of results

We explore correlations between architecture and design smells cumulatively
as well as between individual pairs. Very high correlations may indicate that
a given smell is superfluous. For example, tracking humans’ left-eye and right-
eye colors will show an extremely high correlation between the two, and con-
sequently storing only eye color is enough. Our analysis shows a very strong
correlation between the high and low granularity smells when considered cu-
mulatively; however, the fine-grained correlation analysis reveals varying de-
grees of correlation. This result demonstrates that each smell provides value-
adding information. Furthermore, interestingly, even similar (by definition)
smells at different granularities show varying degrees of correlation. Five ar-
chitecture smells have similar corresponding smells at design granularity; it
means that these smells represent and capture the same concept at differ-
ent granularities. These smell pairs with their corresponding correlations are
cyclic dependency—cyclically-dependent modularization (ρ = 0.67), feature
concentration—multifaceted abstraction (ρ = 0.38), scattered functionality—
broken modularization (ρ = 0.51), god component—insufficient modularization
(ρ = 0.68), and ambiguous interface—imperative abstraction (ρ = 0.32). The
varying degree of correlations—from low to moderate and strong—indicates
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the non-monotonic relationship between these smell pairs and further empha-
sizes the individuality and uniqueness of these smells.

We examine the collocation relationship between architecture and design
smells; the results show that they exhibit collocation only for some smell pairs.
It implies that though architecture smells arise from code and implementation
choices made during the software development, the factors that cause them go
beyond these choices and they have their individuality unique from smells at
design granularity.

Our temporal analysis to explore the causality between design and archi-
tecture smells clearly shows that design smells cause architecture smells. In
other words, the cause of the present set of detected architecture smells can
often be traced back not only to the architecture smells in previous versions
but also to the design smells.

7.2 Understanding the interplay between correlation, collocation, and
causation

Design 
smells

Architecture 
smells

Commits 

3 0 Commit1

5 2 Commit2

… … …

189 46 Commitk

Design smells Architecture smells

Repository1 15 5

Repository2 7 2

… … …

Repositoryn 23 9

Correlation

GC
c11, c12, 
c13

FC
c1, c2, c3, 
c4

IM
c12

UA
c1…

Collocation

Causation

Fig. 11: Understanding correlation, collocation, and causation. IM and UA are
examples of design smell instances and GC and FC are examples of architecture
smell instances. ci refers to involved class in a smell instance.

Let us recap the correlation, collocation as well as causation between design
and architecture smells (see Figure 11).

Correlation analysis is performed at the unit-scope of a repository i.e., we
measure the total number of detected instances for design and architecture
smells for each repository and perform correlation analysis between the
obtained series. This implies that the high correlation that our results
exhibit is applicable at the repository or project level.

Collocation is calculated per class for each pair of design and architecture
smell instance. We determine if the considered pair of architecture and
design smell instance is occurring in the same set of classes. Architecture
smells are by default reported at the component granularity and hence we
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map each instance of architecture smell to a set of classes by computing
participating classes for the smell.

Causation is a temporal relationship that we measure by analyzing many
commits of a repository and performing Granger’s causality on the obtained
time-series.

All this means is that correlation and collocation analysis differ signifi-
cantly on their unit-scope. Given a confined unit-scope i.e., type, collocation
represents a stricter relationship compared to correlation. The source of the
weaker collocation can be traced back to the stricter relationship.

7.3 Implications of Reported Findings

We infer the following implications for the software development community.

Software development teams must detect, analyze, and refactor smells at
all granularities. This implication is derived from our correlation analysis for
smells arising at different granularities. Our results show that the presence of a
high volume of design smells is associated with the presence of a high number
of architecture smells and vice versa. Existing tools (such as NDepend14 and
SonarQube15) mainly detect implementation and some design issues. Due to
this limitation, a software development team using these tools perceives only
a limited set of quality issues and thus issues at higher granularities may go
unnoticed.

Developers must avoid cycles among classes as well as among components
to keep the structure of the software easy to understand. Our results show that
cyclic dependencies at both design and architecture granularities occur most
frequently in open-source C# repositories compared to other smells (refer to
RQ1 results). A higher number of cycles in software introduce tangles and
make the software difficult to comprehend.

The smell density of a software system does not depend on the size of the
software. Actively used software systems grow; however, whether the software
evolves with the focus on code quality or not defines the long-term maintain-
ability of the software. For example, in our analysis, the dense structure smell
has been detected in fewer than 5% of the analyzed repositories. We observed
that the median of loc computed for all the analyzed repositories is 7 394
while it is 42 405 for the repositories where the smell has been detected. This
indicates that the smell is less prone to occur in small repositories. However,
the large size of a repository is not the only deciding factor. We found that 72
repositories are larger than the median loc 42 405 where the smell does not
occur. This implies that the evolution of a software system focused on quality
may result in a more maintainable software system.

14 http://www.ndepend.com/
15 https://www.sonarqube.org/
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7.4 Secondary Contributions of this Work

We have added support to detect seven architecture smells in the Designite
tool. The software development community may use this tool to analyze their
source code and improve the maintainability of their code. The research com-
munity may utilize the tool to carry out studies concerning code smells. The
tool is available online16 and free for all academic purposes.

We analyzed more than 3000 repositories to prepare a dataset containing
the detected smells at architecture, design, and implementation granularities
for each of the analyzed repositories. We used this dataset to answer the re-
search questions addressed in this paper. We have made the dataset avail-
able online [72]. The software engineering research community may utilize it
in many ways including bench-marking and comparison as well as exploring
other dimensions of source code suffering from smells.

8 Threats to Validity

Construct validity concerns the appropriateness of observations and inferences
made on the basis of measurements taken during the study. Static code anal-
ysis is typically prone to false-positives and false-negatives. To mitigate this
concern, we employed a comprehensive set of tests for the smell detection tool
used in this study to rule out obvious deficiencies. Additionally, we found the
results of manual validation of the detected instances by the tool very satis-
factory (Section 5.3.1).

Designite uses various metric thresholds to detect smells. It is a known
and accepted fact that there is no one globally accepted threshold set for
various metrics [25,35]. We chose the thresholds that are commonly used by the
software engineering community. Moreover, we made many of the thresholds
customizable within the tool to let users choose a set of appropriate thresholds
based on their organization’s preferences.

The higher the abstraction, the more important the context of a software
system becomes. Context and domain knowledge play an important role while
detecting and refactoring, especially, design and architecture smells. Given the
sheer scale, it was not possible to carry out a qualitative analysis for all the
repositories. Considering a large number of repositories mined in this study,
we believe that the results are still relevant and generalizable.

While computing causality relationship between design and architecture
smell instances over a period of time, there could be some confounding fac-
tors [81] that influence both design and architecture smell instances time-series.
Randomization is often used to reduce the effects of confounding factors that
we also adopted in the study.

External validity concerns the generalizability and repeatability of the pro-
duced results. The study analyzes only open-source C# repositories as subject

16 https://www.designite-tools.com
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systems. Given the fact that most of the current literature focuses only on sub-
ject systems written in Java programming language, our study complements
the existing literature. Furthermore, we have considered a large set of 3 073
C# repositories of varied sizes and contexts, making this work the largest
mining study (by scale) so far for software smells.

9 Conclusions

Architecture smells are the design degradation indicators at architecture gran-
ularity spanning multiple software components. Combining finer-grained code
smells with the coarse-grain smells could make the task of maintaining a high
quality of a software product easier. This work carries out correlation, col-
location, and causation analysis to identify relationships among design and
architecture smells. We implemented seven architecture smells in our code
smell detection tool Designite and mined seven architecture and 19 design
smells from a large set of 3 073 C# repositories downloaded from GitHub. A
total of 1 232 348 architecture and design smell instances are made available to
the software engineering research community in the form of a smell dataset.

The results of this study indicate that cyclic dependency is the most fre-
quently occurring architecture smell. This may prompt developers to pay ad-
ditional attention to avoid cycles among the components. The co-occurrence
analysis shows that the architecture smells exhibit a strong positive correlation
(ρ = 0.85) with design smells. This implies that a project containing a high
number of design smells also exhibit a higher number of architecture smells
and vice-versa. We perform fine-grained correlation analysis between individ-
ual smell pairs. The results reveal the varying degree of correlation between
the smell-pairs belonging to different granularities.

Our collocation analysis reveals that both kinds of smells show selective
collocation and the majority of smell pairs do not collocate with each other.
Furthermore, our exploration to understand the causal relationship between
architecture and design smells shows that design smells cause architecture
smells. It implies that refactoring design smells early in a software development
lifecycle may result in fewer architecture smells in the future versions of the
software system.

In the future, we intend to extend our supported set of architecture smells
and carry out more detailed analysis such as patterns of smell introduction
and removal with time along with their relationships. Further, a comprehen-
sive catalog of architecture smells containing examples, causes, appropriate
thresholds, and remedies would be of great use to the software practitioners.
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