
Refactoring for Software Architecture Smells

Ganesh Samarthyam
CodeOps Technologies LLP

C V Raman Nagar,
Bangalore, India

ganesh@codeops.tech

Girish Suryanarayana
Siemens Corporate Research

& Technologies,
No. 84, Electronics City,

Bangalore, India
girish.suryanarayana@

siemens.com

Tushar Sharma
Dept of Management Science

and Technology,
Athens University of

Economics and Business,
Athens, Greece

tushar@aueb.gr

ABSTRACT
Code smells and refactoring have received considerable in-
terest from the academia as well as from the industry in
the past two decades. The interest has given birth to var-
ious tools, processes, techniques, and practices to identify
smells and refactor them. Despite the high interest, architec-
ture smells and corresponding refactorings haven’t received
as much focus and adoption from the software engineering
community. In this paper, we motivate the need of archi-
tecture refactoring, discuss the current related research, and
present a few potential research directions for architecture
refactoring.

CCS Concepts
•Software and its engineering → Software architec-
tures; Software maintenance tools; Designing soft-
ware;

Keywords
Architecture smells; Architecture refactoring; Software ar-
chitecture

1. INTRODUCTION

Cities grow, cities evolve, cities have parts that
simply die while other parts flourish; each city
has to be renewed in order to meet the needs of
its populace [. . . ] Software-intensive systems are
like that.

Grady Booch uses the evolution of a city as a metaphor
to emphasize the need for refactoring software systems (in
the forward of the book by Girish et al. [27]). Some of
the indicators of an ailing city include congested roads and
traffic jams, pollution of water bodies and air, and piles of
garbage. Such a city requires “renewing” at multiple levels
and scale. When a city fails to address the growing needs of

its populace, it can lead to a“crisis” situation and ultimately
to its abandonment.

The evolution of software systems is akin to evolution of
a city. With evolution of a software system, complexity of
the system increases unless efforts are made to maintain and
reduce it [16]. Refactoring is a well-known technique defined
as“behavior preserving program transformations”[8] to cope
up with increasing complexity and keep the software main-
tainable. Failure to perform periodic refactoring leads to
accumulation of technical debt [4] and ultimately to “tech-
nical bankruptcy”. Hence, periodic refactoring is essential
for long-lived software to improve and maintain structural
quality of the software.

In general, smells and their corresponding refactorings are
applied at various granularity levels. Smells could be cat-
egorized as implementation smells [8], design smells [27],
and architecture smells [9]. The categorization of a smell
depends on factors such as their scope and the impact on
the rest of the system. Implementation smells have lim-
ited scope (typically confined to a class or file) and have
a limited local impact. On the other hand, architecture
smells span multiple components and have a system level
impact. Since smells differ in their scope, impact, and effort
required for refactoring, it is pragmatic to classify the smells
into implementation, design, and architecture smells. Simi-
lar to smells, refactoring techniques applied to refactor these
smells can also be classified as implementation refactoring,
design refactoring, and architecture refactoring.

Due to a wide adoption of agile and lean methods of soft-
ware development, refactoring has received considerable fo-
cus from the academia and the industry. Several excellent
tools, processes, techniques and practices have been devel-
oped to adopt refactoring as an integral part of the devel-
opment lifecycle [3,6,30]. However, architecture refactoring
hasn’t received as much focus from the software engineering
community. In this paper, we summarize the state of the art
on refactoring for architecture smells and provide a research
outline for the road ahead.

2. MOTIVATION
Industrial software systems are typically complex and long-

lived. Consider Windows operating system for example. It
has grown to more than 50 million loc over the last 25 years.
Evolution at such a scale of time and size poses a threat to
the structural quality of the software. Hence, periodic ar-
chitecture refactoring is required to maintain the structural
quality of such a complex and evolving software system. In
addition, such refactorings are mandatory for the success of

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

IWoR’16, September 4, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-4509-5/16/09...

http://dx.doi.org/10.1145/2975945.2975946

1



Figure 1: Tangle in Java core library depicting “dependency cycles between packages” smell

the software product as they facilitate an easier integration
of new features. For instance, a major refactoring effort was
carried out for Windows while evolving from Vista to Win-
dows 7 version [12]. The primary goal of this refactoring
was to remove undesirable dependencies among modules so
that layering violations can be addressed and dependency
structure can be improved.

In this case study, the authors refer to architecture refac-
toring without using the terms “architecture refactoring” or
“architecture smell” anywhere in their paper; instead they
use other related terms such as “system-wide refactoring”.
We argue that, this work (among numerous others) illus-
trate that “architecture refactoring” is an emerging domain
that is yet to find its place in common vocabulary used by
researchers and practitioners working in the area of software
engineering in general and refactoring in particular.

Now, let us consider the Java core library (jdk). jdk
has evolved considerably in size and complexity since the
release of its first version in 1995. For instance, consider
the “tangle” (i.e., a part of a dependency graph in which all
the items are directly or indirectly dependent on all other
items) in the Java 8 core library (refer Figure 1; the fig-
ure is generated by using Structure 101 tool). The packages
involved in the cycle have to be used, reused, tested, and de-
ployed together leading to various maintenance woes. It is
referred as “dependency cycles between packages” architec-
ture smell [17]. This smell negatively affects maintainability,
reusability, testability, reliability, and deployability of the
software. With changes being performed in Java 9 (project
Jigsaw) [11], it is expected that the modularity concerns will

be addressed, including the removal of considerable number
of such cyclic dependencies between packages in the jdk.

From these case studies, it is evident that architecture
smells (such as “large module” and “dependency cycles be-
tween packages” smells) are distinct from smells arising at
other granularities such as implementation smells (for in-
stance, “large method” [8]) and design smells (for instance,
“cyclically-dependent modularization” smells [27]). As dis-
cussed earlier, the scope and impact of architecture refactor-
ings is relatively higher when compared to refactoring at im-
plementation and design granularities. Additionally, archi-
tecture refactoring require significant amount of effort and
time compared to with implementation and design refactor-
ings. Refactoring in these two case studies has taken many
years with considerable planning and team co-ordination in-
volved. At the same time, the benefits of architecture refac-
toring are also significantly high and serve relatively longer
than other types of refactorings.

3. RELATED WORK
Garcia et al. [9] defined architecture smell as “a commonly

(although not always intentionally) used architectural deci-
sion that negatively impacts system quality”.

Researchers use various terms for architectural smells, in-
cluding “architectural bad smells” [9], “architecture smells”
[17],“anti-patterns”[2],“architecturally-relevant code smells”
[1], “contra-indicated patterns” [15], “architectural defects”
[23], “[accidental] architectural anti-patterns” [14]. Further,
researchers have explored specific categories of architecture
smells; for example, Rama et al. discusses“modularity smells”

2



[22], and Ouni et al. outlines “web service antipatterns” [21]
in the context of Service Oriented Architectures (soa).

On the other hand, architecture refactoring is defined as
“a coordinated set of deliberate architectural activities that
remove a particular architectural smell and improve at least
one quality attribute without changing the system’s scope
and functionality” [32]. Architectural refactorings are also
referred to as “high-impact refactorings” [7], “architecture
transformation” [10], and “large refactorings” [17]. We have
observed practitioners using other terms such as“architecture-
oriented refactorings”.

In our earlier work on design smells [24,27], we focused our
study on the vast literature on object-oriented design smells.
We cataloged and classified a number of recurring structural
design smells based on how they violate key object oriented
design principles.

There have been a few attempts to catalog architecture
smells or refactorings [9, 26]. A few architecture refactoring
case studies performed on industrial projects also have been
reported. For example, Kumar et al. [13] presents an archi-
tecture refactoring case study performed on a mission criti-
cal application. There are exploratory studies on emerging
topics in architecture refactoring, such as architecture refac-
toring in software product lines [5] and architecture technical
debt [20].

4. POTENTIAL RESEARCH DIRECTIONS
Despite many attempts to explore architecture smells and

corresponding refactorings in diverse dimensions, the do-
main is far from maturity. Based on the related work in
this area (described in the previous section) and our experi-
ence as practicing architects, we envision the following areas
for further research on this topic:

• Catalog of architectural smells: A comprehensive
catalog of architecture smells and refactorings with an
appropriate classification would better guide a soft-
ware developer in understanding and addressing po-
tential issues in the architecture of his/her software
system. As discussed above, there has been a few
attempts to catalog architecture smells and refactor-
ings. However, a comprehensive catalog of architec-
tural smells with detailed explanation, examples, con-
text, their technical and economic impacts on the soft-
ware product, and refactoring suggestions is still miss-
ing. We envision a taxonomy of architecture smells
and corresponding refactorings, classified based on di-
mensions such as Structure and Behavior.

• Tool support: Although, there are a few tools such as
Sonargraph [25] that may help us detect architecture
smells. However, currently available tools are insuffi-
cient from various aspects:

– The present set of tools does not detect a com-
prehensive number of architecture smells.

– Architecture smells are contextual in nature. The
present set of tools does not consider the contex-
tual information for smell detection.

– Common IDEs (Integrated Development Environ-
ments) such as Eclipse, Visual Studio, IntelliJ
IDEA, and Netbeans allow developers to perform-
ing code refactoring automatically. However, IDEs

lack support for detecting architecture smells and
do not help perform architecture refactorings ef-
fectively.

An ecosystem of tools for detecting architectural smells,
providing refactoring recommendations, and helping
perform the architecture refactorings is sorely lack-
ing [29].

• Economics of architecture refactoring (quanti-
fying architecture technical debt): Architecture
debt is a significant component of technical debt for a
software system. It is not trivial to quantify architec-
ture debt given the challenges associated with it. Ma-
jor challenges include detecting architecture smells au-
tomatically with associated severity, defining a quan-
tification model which can be customizable and ad-
justable based on the project properties and mapping
the detected smells to the model, and quantifying the
interest aspect of the debt correctly. Researchers have
proposed a few solutions, such as the one by Xiao et
al. [31]; despite this, more focused research is required
to develop a comprehensive yet practical quantification
method for architecture debt. In general, more studies
on evaluating the benefits of architecture refactoring
(from software engineering economics perspective) is
needed.

• Empirical studies: Though there are a few case
studies reported on architecture smells or refactoring
(such as Kumar et al. [13]), there is a huge potential for
empirical studies on architectural smells or refactoring
and their impact on various aspects of software de-
velopment. Such an empirical study on large software
systems may reveal many interesting insights about the
characteristics of architecture smells and their impact
on the software and the development efforts.

• Refactoring and emerging architecture styles
and patterns: In the last few years, new architec-
ture styles and patterns (such as Microservices [19]
and Containerization [28]) have received considerable
attention in the software industry. For example, refac-
toring from monolithic to microservices is a topic often
discussed by practitioners [19]. However, architecture
smells and refactoring in the context of these new ar-
chitecture styles and patterns is yet to be explored by
the software engineering researchers.

5. CONCLUSIONS
Practices such as refactoring are key to overcome or avoid

the negative effects of software aging because they place
change and evolution in the center of the software devel-
opment process [18]. Knowing architecture smells for a soft-
ware system and performing associated refactorings could
avoid architecture erosion. However, architecture smells and
refactoring are yet to receive extensive focus. In this paper,
we have discussed related research and outlined a few poten-
tial areas for further research in the domain of architecture
smells and refactoring. We hope that this work will spark
more ideas and research in this domain and ultimately their
wider adoption in industry.

3



6. REFERENCES
[1] I. M. Bertran. Detecting architecturally-relevant code

smells in evolving software systems. In 33rd
International Conference on Software Engineering
(ICSE), pages 1090–1093, May 2011.

[2] W. H. Brown, R. C. Malveau, H. W. S. McCormick,
and T. J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John
Wiley & Sons, Inc., 1st edition, 1998.

[3] Y. Cai and R. Kazman. Software architecture health
monitor. In Proceedings of the 1st International
Workshop on Bringing Architectural Design Thinking
into Developers’ Daily Activities, BRIDGE ’16, pages
18–21, New York, NY, USA, 2016. ACM.

[4] W. Cunningham. The wycash portfolio management
system. SIGPLAN OOPS Mess., 4(2):29–30, 1992.

[5] H. S. de Andrade, E. Almeida, and I. Crnkovic.
Architectural bad smells in software product lines: An
exploratory study. In Proceedings of the WICSA 2014
Companion Volume, WICSA ’14 Companion, pages
12:1–12:6, New York, NY, USA, 2014. ACM.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object
Oriented Reengineering Patterns. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2002.

[7] J. Dietrich, C. McCartin, E. D. Tempero, and
S. M. A. Shah. On the detection of high-impact
refactoring opportunities in programs. CoRR, 2010.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Programs. Addison-Wesley Professional, 1
edition, 1999.

[9] J. Garcia, D. Popescu, G. Edwards, and
N. Medvidovic. Toward a Catalogue of Architectural
Bad Smells. In Proceedings of the 5th International
Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, pages
146–162. Springer-Verlag, 2009.

[10] L. Grunske. Identifying ”good” architectural design
alternatives with multi-objective optimization
strategies. In Proceedings of the 28th International
Conference on Software Engineering, pages 849–852.
ACM, 2006.

[11] Project Jigsaw.
http://openjdk.java.net/projects/jigsaw/, 2016.
[Online; accessed 11-Jun-2016].

[12] M. Kim, T. Zimmermann, and N. Nagappan. An
empirical study of refactoring challenges and benefits
at microsoft. IEEE Transactions of Software
Engineering, 40(7):633–649, July 2014.

[13] M. R. Kumar and R. H. Kumar. Architectural
refactoring of a mission critical integration application:
A case study. In Proceedings of the 4th India Software
Engineering Conference, pages 77–83. ACM, 2011.

[14] A. Lauder and S. Kent. Legacy System Anti-Patterns
and a Pattern-Oriented Migration Response, pages
239–250. Springer London, 2000.

[15] A. Lauder and S. Kent. Systems engineering for
business process change. pages 225–240.
Springer-Verlag New York, Inc., 2002.

[16] M. M. Lehman. Laws of software evolution revisited.
In Proceedings of the 5th European Workshop on
Software Process Technology, pages 108–124.
Springer-Verlag, 1996.

[17] M. Lippert and S. Roock. Refactoring in large
software projects: performing complex restructurings
successfully. John Wiley & Sons, 2006.

[18] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software
evolution. In Proceedings of the Eighth International
Workshop on Principles of Software Evolution,
IWPSE ’05, pages 13–22, Washington, DC, USA, 2005.

[19] S. Newman. Building Microservices. O’Reilly, 2015.

[20] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In Joint Working
IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software
Architecture (ECSA), pages 91–100, Aug 2012.

[21] A. Ouni, M. Kessentini, K. Inoue, and M. O.
Cinneide. Search-based web service antipatterns
detection. IEEE Transactions on Services Computing,
PP(99):1–1, 2015.

[22] G. M. Rama. A desiderata for refactoring-based
software modularity improvement. In Proceedings of
the 3rd India Software Engineering Conference, pages
93–102. ACM, 2010.

[23] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan,
and D. Zhang. Using multiple views to model and
analyze software architecture: An experience report.
Technical Report USC-CSE-2003-508, University of
Southern California (CSE), 2003.

[24] G. Samarthyam, G. Suryanarayana, T. Sharma, and
S. Gupta. Midas: A design quality assessment method
for industrial software. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 911–920, 2013.

[25] Sonargraph.
https://www.hello2morrow.com/products/sonargraph,
2016. [Online; accessed 11-Jun-2016].

[26] M. Stal. Software architecture refactoring. In Tutorial
in The International Conference on Object Oriented
Programming, Systems, Languages and Applications,
2007.

[27] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann, 1 edition, 2014.

[28] M. H. Syed and E. B. Fernandez. The software
container pattern. In 22nd Conference on Pattern
Languages of Programs, PLoP, 2015.

[29] R. Terra, M. T. Valente, K. Czarnecki, and R. S.
Bigonha. Recommending refactorings to reverse
software architecture erosion. In 16th European
Conference on Software Maintenance and
Reengineering (CSMR), pages 335–340. IEEE, 2012.

[30] L. Tokuda and D. Batory. Evolving object-oriented
designs with refactorings. Automated Software Engg.,
8(1):89–120, Jan. 2001.

[31] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng.
Identifying and quantifying architectural debt. In
Proceedings of the 38th International Conference on
Software Engineering, pages 488–498. ACM, 2016.

[32] O. Zimmermann. Architectural refactoring: A
task-centric view on software evolution. IEEE
Software, 32(2):26–29, Mar 2015.

4


