
Architecture Smells and Pareto Principle:
A Preliminary Empirical Exploration

Alexandra-Maria Chaniotaki
Athens University of Economics & Business

Athens, Greece
alchaniotakis@gmail.com

Tushar Sharma
Siemens Technology

Charlotte, USA
tusharsharma@ieee.org

Abstract—Architecture smells represent violations of best
practices recommended for software architecture that adversely
impact various quality attributes of a software system. Though
architecture quality is considered very important by the software
engineering community, architecture refactoring, given involved
high risk and effort, is often avoided by software development
teams. In this paper, we empirically explore the properties
of architecture smells in the context of the Pareto principle.
We investigate the degree of adherence of architecture smell
occurrences to the Pareto principle and explore the influence
of other related factors i.e., programming language and size of
the repositories. To this end, we analyzed 750 Java and 361
C# repositories containing more than 50 million lines of code
to detect seven kinds of architecture smells. We found that
approximately 45% of the Java repositories follow the Pareto
principle. Moreover, C# repositories show significantly higher
adherence (66%) to the principle than the repositories written in
Java. Our results indicate that the size of the repositories shows
a low negative correlation with the Pareto categories. The results
imply that software development teams can figure out a few vital
components suffering from architecture smells by carrying out
the Pareto analysis. It will allow them to optimize their efforts
towards making their software architecture quality better.

Index Terms—Architecture smells, Pareto principle

I. INTRODUCTION

The metaphor of code smells refers to the software quality
issues impairing the maintainability of a software system [1],
[2]. Architecture smells are quality issues at architecture gran-
ularity affecting software quality adversely [3], [4]. Software
architecture is a blueprint of a software system representing the
critical design decisions with system-wide impact [5]. Many
studies [6]–[9] in this domain have established that smells neg-
atively impact software architecture. However, given their wide
scope and side-effects, architecture smells require considerable
effort to refactor; that, in turn, discourage software developers
from carrying out architecture refactorings [8], [10].

Software engineering researchers have proposed mecha-
nisms to prioritize code smells [11], [12] based on factors such
as severity and change patterns. Though these code smells
prioritization techniques could be extended to architecture
smells to some extent, these techniques do not fulfill the
unique requirements posed by architecture smells. One such
requirement is identifying the smallest possible number of
architectural components that can be changed for a refactoring
exercise in such a way that it fixes as many as possible

architecture smells. This is desired because architecture smell
refactoring, by definition, changes one or more components
and impacts, by ripple changes, a set of components. By
keeping the number of components requiring changes due to
architecture refactoring limited, ripple effect of the refactoring
exercise and the associated refactoring effort is optimized. This
optimization is a result of the fact that some refactorings are
not required to be carried out as they are not applicable or
redundant after applying a subset of refactorings [13].

The Pareto principle or the 80:20 rule is attributed to the
Italian economist Vilfredo Pareto who observed that 80% of
the land in Italy is owned by 20% of the population [14].
The principle exhibits that a task on a set of artifacts can
be optimized by performing the task on a subset of artifacts
in an attempt to reduce the effort to 20% of its original
value and yet achieve as high as 80% of the output. The
principle carries a significant influence on understanding the
cause and attaining the efficacy in fixing the effects. Hence,
the principle has been studied in various domains, including
economics [15], law [16], and social sciences [17]. Software
engineering researchers have also explored the applicability of
the principle on topics including defect analysis [18], [19] and
investigations of contributions to open-source projects [20],
[21]. In the context of code smells, a study by Malhotra et al.
[22] shows that refactoring 10% of the total classes may lead
to code smells reduction up to 47%.

In this study, we empirically explore the properties of ar-
chitecture smells in the context of the Pareto principle. We not
only investigate the degree of adherence of architecture smell
occurrences to the Pareto principle, but we also explore the
influence of other related factors, i.e., programming language
and the size of the repositories. Though researchers have stud-
ied various aspects of architecture smells recently [8], [23]–
[26], to the best of our knowledge, the Pareto characteristic
of architecture smells has not been studied yet. Studying this
phenomenon in architecture smells could lead us to many
insights. A high degree of adherence to the principle would
mean that a software development team could optimize their
refactoring efforts focusing on a vital few components and
attain maximum benefits for the effort. Researchers may utilize
the insights from the study to better focus on architecture
smells of a few critical components resulting in an optimized
order of refactorings.



TABLE I
DESCRIPTION OF CONSIDERED ARCHITECTURE SMELLS

Architecture smell Description
Cyclic dependency Two or more architecture-level components depend

on each other directly or indirectly [4], [27].
Unstable
dependency

A component depends on other less stable compo-
nents [28].

Ambiguous
interface

A component offers only a single, general entry-
point into the component [29].

God component A component is excessively large either in terms
of Lines Of Code (LOC) or number of classes [4].

Feature concentra-
tion

A component realizes more than one architectural
concerns or features [3].

Scattered function-
ality

An architectural concern is realized by multiple
components [29].

Dense structure Excessive and dense dependencies among compo-
nents lead a project to suffer from this smell [30].

II. METHOD

We explore three research questions in the study. We
downloaded a large number of C# and Java repositories from
GitHub. We analyzed all the downloaded repositories using
Designite and DesigniteJava to detect architecture smells. We
provide the answers to the research questions by analyzing the
identified smells from all the considered repositories.

A. Research Questions

RQ1. Do architecture smells follow the Pareto principle?
This question investigates the degree of adherence of archi-
tecture smells to the Pareto principle by analyzing a large set
of open-source repositories. This exploration aims to explore
the interesting attribute associated with architecture smells and
could lead to optimizing architecture refactoring efforts.

RQ2. Do different programming languages exhibit the
phenomenon differently?

In this research question, we compare the occurrence of the
phenomenon in programs written in Java and C# programming
languages. This experiment will allow us to understand the role
of programming languages in the adherence of architecture
smells to the Pareto principle.

RQ3. Does the size of the repositories influence the
adherence to the Pareto principle?

We investigate whether the size of the repositories influences
the adherence to the Pareto characteristic. It will enable us to
better understand the phenomenon and the architecture smells.

B. Subject Systems

We used RepoReapers [31] to select the subject systems.
RepoReapers analyzes GitHub repositories and provides their
quality characteristics based on eight dimensions (architecture,
continuous integration, unit testing, community, documen-
tation, history, issues, and license). RepoReapers assigns a
score corresponding to each dimension. We selected all the
repositories containing either Java or C# code where at least
seven out of eight RepoReapers’ dimensions have a greater
than zero score. We selected repositories tagged with more
than 10 stars and with at least 1, 000 lines of code. We used

the same criteria for both the programming languages and
downloaded 1, 721 Java and 468 C# repositories. We used
DesigniteJava [32] and Designite [33] for analyzing Java and
C# repositories respectively. DesigniteJava requires compiled
.class files along with source code files to identify smells
correctly and hence we first compiled the subject systems.
We checked for the usage of one of the three commonly
used build systems for Java, i.e., Maven, Gradle, and Ant and
triggered the corresponding command to compile the project
automatically. We could not analyze some of the repositories
due to either missing external dependencies, custom build
mechanisms (i.e., missing standard C# project files), or build
mechanism other than the ones considered in this study. We
discarded test and sample components to keep the focus of
the analysis on the production code. Furthermore, we removed
projects for which the total number of lines of code is less than
1,000 after removing test and sample components. At the end,
we successfully analyzed and retained 750 Java and 361 C#
repositories.

C. Architecture Smells and Tool Support

Table I provides a brief description of architecture smells
considered in this study. Sharma et al. [24] provide a detailed
description of the smells and their corresponding detection
mechanisms. We used DesigniteJava [32] and Designite [33]
to identify architecture smells in the subject systems. Both the
software design quality assessment tools support detection of
the architecture smells apart from supporting detection of a
wide range of design and implementation smells. A detailed
validation of the tools can be found in Sharma et al. [24].
Both the tools implement the same mechanism to detect the
smells1. The tools have been used in various related studies
[24], [34], [35]. An architecture component is referred to a
namespace (C#) or a package (Java); in case of nesting, we
consider only the terminal (most deeply nested) components.
We used Academic licenses of the tools for this study.

D. Reproduction package

We have made available all the data and scripts online
[36] to facilitate reproducibility. We encourage the reader to
explore, utilize, and extend the provided data, scripts, and
experiments.

III. RESULTS

A. RQ1. Do architecture smells follow the Pareto principle?

1) Approach: We consider all the subject systems written
in Java among the selected repositories and detect architecture
smells using DesigniteJava. We prepare a list of all the
components (i.e., packages in Java) for all the repositories
and note all the architecture smells that were reported in each
component. Subsequently, we carry out the Pareto analysis,
i.e., we find whether 20% of the components with the highest
numbers of architecture smells account for 80% of the total
architecture smells.

1http://www.designite-tools.com/faq/#11



It is relevant to mention that segregating architecture smells
based on the components where they occur is a non-trivial
task because the scope of each of the architecture smell is not
the same. For instance, the scope of a god component smell
instance is limited to the component where it gets reported, and
hence changes in only that component are required to refactor
the smell. However, the scope of a scattered functionality smell
instance spans multiple components and it requires refactoring
in two or more components to remove the smell. Similarly, the
scope of cyclic dependency and dense structure smells is also
not limited to a component.

To factor-in the varying scope, we carry out a deeper anal-
ysis. We analyze the cause—reported by the smell detection
tool—of three architecture smells where the scope is not
limited to a single component and extract other components
that participate in the smell to assign them the identified
smell. For example, if an instance of scattered functionality
is reported in component A where two components B and
C implement the same architectural concern then we assign
this smell not only to component A but also to component
B and C. Similarly, when an instance of dense structure is
encountered, we assign this smell to all causing components.
However, cyclic dependency smell has a unique characteristic.
Though there could be multiple components participating in an
instance but refactoring one component makes the smell dis-
appear. Thus, despite we assign a cyclic dependency instance
to all the components participating in the cycle but upon the
first inclusion of the component in the Pareto analysis for a
smell instance, we remove the smell from other components
belonging to the same cycle. This mechanism helps us carry
out the Pareto analysis respecting the semantics of the smells.

2) Results: Figure 1 shows the result of the Pareto analysis.
We not only analyze the detected architecture smells data
for the traditional 20:80 Pareto category but also for other
categories to observe the smell occurring pattern. In the figure,
a Pareto category X-Y refers to X% components having at least
Y% of architecture smells.

10.0

45.7

80.0
94.4 97.3 100.0

0.0

20.0

40.0

60.0

80.0

100.0

0
100
200
300
400
500
600
700

10-90 20-80 30-70 40-60 50-50 60-40

No
 o

f r
ep

os
ito

rie
s

Current pareto category
Previous pareto caegory (cumulated)
Percent

Fig. 1. Results of Pareto analysis for Java repositories

Our results show that 45.7% of the considered Java
repositories follow the Pareto principle i.e., the top 20%
of the components have 80% of the architecture smells.
We observe that at one extreme, along the expected lines,
approximately 10% repositories belong to the 10−90 category

i.e., 10% of the components have 90% of the architecture
smells in these repositories. On the other hand, category 60-40
covers all the considered repositories.

3) Implications: This result implies that a large number of
Java repositories can be refactored from the architecture per-
spective by modifying a relatively small number of packages
to eliminate a relatively large portion of architecture smells.
A development team can explore the Pareto category of their
project and figure out the vital few components suffering from
architecture smells. It will allow them to optimize their efforts
towards making their software architecture quality better.

B. RQ2. Do different programming languages exhibit the
phenomenon differently?

1) Approach: We extend the analysis step of RQ1 to
a new set of repositories written in C#. Similar to Java
repositories, we analyze all the considered C# repositories
using Designite and compile a list of all the components (i.e.,
namespaces in C#) along with their corresponding individual
types of architecture smells. We perform the Pareto analysis
considering data from both the programming languages and
identify different Pareto categories. We use the same method
to segregate architecture smells based on the C# components
as illustrated in RQ1 for Java repositories. We carry out Mann-
Whitney U test to investigate the degree of similarity between
categories obtained from both kinds of repositories. For the
test, the Pareto categories are the groups where the dependent
variable is the Pareto category (ordinal) and the independent
variable is the programming language (with two groups C#
and Java).

10-90 20-80 30-70 40-60 50-50 60-40
Java 10.0 45.7 80.0 94.4 97.3 100.0
C# 20.8 65.9 90.3 96.7 97.8 100.0

0.0
20.0
40.0
60.0
80.0

100.0

Pr
oj

ec
ts

 (i
n 

pe
rc

en
t)

Pareto categories 

Fig. 2. Comparison of the Pareto analysis between Java and C# repositories

2) Results: Figure 2 presents the comparison of the Pareto
property between programs written in Java and C#. We observe
a significant difference between the sets of programs. Approx-
imately, every two out of three C# repositories (65.9%) adhere
to the Pareto principle compared to 45.7% Java repositories.
We obtained W = 102, 210 (p-value = 3.646e − 12) from
the Mann-Whitney U test that indicates that the Pareto cate-
gories of the repositories representing both the programming
languages are significantly different. This result leads to the
insight that architecture smells tend to congregate around
a few components in C# repositories compared to the Java
repositories.



3) Implications: The results imply that refactoring efforts in
C# repositories, in general, may tend to concentrate on fewer
components than Java repositories for a similar number of
architecture smells.

C. RQ3: Does the size of the repositories influence the adher-
ence to the Pareto principle?

1) Approach: We carry out a Spearman correlation analysis
between LOC of the analyzed subject systems and the assigned
Pareto category. We assign an ordinal value to each Pareto
category to carry out Spearman correlation analysis. We assign
the closest Pareto category that the repository satisfy. We also
examine the influence of the size on the Pareto categories by
visually analyzing the results.

2) Results: Figure 3 shows a boxplot to observe the Pareto
characteristic against the size of the repositories. We observe
that the Pareto categories 10 − 90 and 20 − 80 tend to have
larger repositories than the rest of the categories. Specifically,
the median LOC of the first two categories combined is 17, 241
and 11, 689 for Java and C# repositories respectively compared
to 11, 126 and 9, 225 for all the categories combined.

10-90 20-80 30-70 40-60 50-50 60-40
Pareto Category

0

25

50

75

100

125

150

175

LO
C

 (i
n 

K
) p

er
 p

ro
je

ct
/re

po
si

to
ry

Language
Java
cs

Fig. 3. Comparison of the Pareto categories with respect to size between Java
and C# repositories

We obtain Spearman correlation coefficient ρ = −0.26 (p-
value < 2.2e−16) between Pareto category and LOC belonging
to all the repositories. For individual datasets, C# repositories
show ρ = −0.29 (p-value = 8.09e−09) and Java repositories
exhibit ρ = −0.26 (p-value = 1.78e− 13) as the value of the
coefficient. The value of the coefficients indicate that LOC has
low negative correlation with Pareto categories.

3) Implications: We observe a low negative correlation
between Pareto categories and LOC of the repositories. The ob-
servation opens the opportunities for the research community
to extend this exploration to better understand other factors
that may show higher influence on the phenomenon.

IV. RELATED WORK

Diverse efforts have been made to offer consolidated lists
of definitions [3], [29], [37] as well as to detect architecture
smells [26]. Some authors such as Martini et al. [8] and Le et
al. [9] have studied the impact of architecture anomalies on
software maintainability. Furthermore, the software engineer-
ing community has explored architectural technical debt i.e.,

non-optimal technical decisions concerning software architec-
ture [38], [39] and its effect on various aspects belonging to
software artifacts. Researchers have proposed a mechanism
to prioritize code smells [11], [12] using various aspects and
strategies. Specifically for architecture smells, there have been
some attempts to propose strategies for prioritizing architec-
ture smells and architecture technical debt [8], [40].

The software engineering community has observed the
applicability of the Pareto Principle to various software engi-
neering aspects. Iqbal and Rizwan [41] observed that 20% of
the initially listed tasks in the waterfall model yield 80% of the
results during the software development process. Yamashita
et al. [21] and Mockus et al. [20] discuss the power-law
characteristics of the contributions by software developers
in open-source software systems. Furthermore, researchers
[18], [19] have studied the distribution of defects in software
systems and the applicability of the Pareto principle. To the
best of our knowledge, this is the first empirical study that
investigates the degree of adherence of architecture smells to
the Pareto principle by analyzing a large number of programs
written in two major programming languages.

V. THREATS TO VALIDITY

Construct validity measures the degree to which tools and
metrics measure the properties they are supposed to measure.
Using two separate tools to detect smells and compare the
results may pose a threat to validity. To mitigate it, we
ensured from the developer of the tools that both the tools
use exactly the same mechanism, metrics, and thresholds to
detect architecture smells. While processing cyclic dependency
smell instances, the order of inclusion of a component may
influence the distribution of smells; however, the overall results
will not change. External validity concerns generalizability
and repeatability of the produced results. To encourage the
replication and building over this work, we have made all the
scripts, and data available online [36]. Internal validity refers
to the validity of the research findings. In the context of our
investigation, we assume that both programming languages
are similar by paradigm and language structure and hence
comparable. It would be interesting to investigate the observed
phenomenon on programs written in programming languages
belonging to different paradigms.

VI. CONCLUSIONS AND FUTURE WORK

In this empirical investigation, we explored the degree of
applicability of the Pareto principle on architecture smells. We
found that 45.7% of the Java repositories follow the Pareto
principle. Our results also reveal that C# programs show a
significantly higher degree of adherence to the Pareto principle
compared to Java programs. Our exploration shows that LOC
of the repositories has a low negative correlation with Pareto
categories. In the future, we would like to extend the scope
of the study to other programming languages. Also, we are
interested in exploring the degree of influence other factors
(such as program properties and metrics) on the applicability
of the principle.



REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 – 173, 2018.

[3] H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural bad smells
in software product lines: An exploratory study,” in Proceedings of the
WICSA 2014 Companion Volume, ser. WICSA ’14 Companion. ACM,
2014, pp. 12:1–12:6.

[4] M. Lippert and S. Roock, Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons,
2006.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[6] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and
A. von Staa, “Are automatically-detected code anomalies relevant to
architectural modularity?” in the 11th annual international conference.
ACM Press, 2012, pp. 167–178.

[7] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. V. Staa,
“On the relationship of code-anomaly agglomerations and architectural
problems,” Journal of Software Engineering Research and Development,
vol. 3, no. 1, p. 11, 2015.

[8] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda, “Identifying and
prioritizing architectural debt through architectural smells: A case study
in a large software company,” in Software Architecture, C. E. Cuesta,
D. Garlan, and J. Pérez, Eds. Cham: Springer International Publishing,
2018, pp. 320–335.

[9] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA), April 2018,
pp. 176–17 609.

[10] G. Samarthyam, G. Suryanarayana, and T. Sharma, “Refactoring for
software architecture smells,” in Proceedings of the 1st International
Workshop on Software Refactoring. ACM, 2016, pp. 1–4.

[11] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards a
prioritization of code debt: A code smell intensity index,” in IEEE 7th
International Workshop on Managing Technical Debt (MTD), 2015, pp.
16–24.

[12] R. Arcoverde, E. Guimarães, I. Macı́a, A. Garcia, and Y. Cai, “Prioriti-
zation of code anomalies based on architecture sensitiveness,” in 2013
27th Brazilian Symposium on Software Engineering, 2013, pp. 69–78.

[13] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE ’14, 2014, p. 331–336.

[14] V. Pareto, Cours d’économie politique. Librairie Droz, 1964, vol. 1.
[15] R. Sanders, “The pareto principle: its use and abuse,” Journal of Services

Marketing, vol. 1, no. 2, pp. 37–40, 1987.
[16] L. Kaplow and S. Shavell, “The conflict between notions of fairness

and the pareto principle,” American Law and Economics Review, vol. 1,
no. 1, pp. 63–77, 1999.

[17] H. F. Chang, “A liberal theory of social welfare: fairness, utility, and
the pareto principle,” Yale LJ, vol. 110, p. 173, 2000.

[18] N. Walkinshaw and L. Minku, “Are 20% of Files Responsible for
80% of Defects?” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’18, 2018.

[19] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, no. 37, pp. 426–431, 2005.

[20] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, p. 309–346, Jul. 2002.

[21] K. Yamashita, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi,
“Revisiting the applicability of the pareto principle to core development

[22] R. Malhotra, A. Chug, and P. Khosla, “Prioritization of classes for refac-
toring: A step towards improvement in software quality,” in Proceedings
of the Third International Symposium on Women in Computing and
Informatics, ser. WCI ’15, 2015, p. 228–234.

teams in open source software projects,” in Proceedings of the 14th
International Workshop on Principles of Software Evolution. ACM,
2015, pp. 46–55.

[23] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[24] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on the
relationship between design and architecture smells,” Empirical Software
Engineering (EMSE), vol. 25, pp. 4020–4068, 2020.

[25] F. A. Fontana, V. Lenarduzzi, R. Roveda, and D. Taibi, “Are architectural
smells independent from code smells? an empirical study,” Journal of
Systems and Software, vol. 154, pp. 139 – 156, 2019.

[26] H. Mumtaz, P. Singh, and K. Blincoe, “A systematic mapping study on
architectural smells detection,” Journal of Systems and Software, vol.
173, p. 110885, 2021.

[27] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells,” in WICSA.
IEEE Computer Society, 2015, pp. 51–60.

[28] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
2016, pp. 433–437.

[29] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward
a catalogue of architectural bad smells,” in Proceedings of the 5th
International Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, ser. QoSA ’09. Springer-
Verlag, 2009, pp. 146–162.

[30] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Workshop on
Mining Software Repositories, ser. MSR’16, 2016, pp. 189–200.

[31] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, Dec 2017.

[32] T. Sharma, “Designitejava (enterprise),” Sep. 2019, available online
at http://www.designite-tools.com/designitejava. [Online]. Available:
https://doi.org/10.5281/zenodo.3401802

[33] ——, “ Designite - A Software Design Quality Assessment Tool,”
May 2016, available online at http://www.designite-tools.com. [Online].
Available: https://doi.org/10.5281/zenodo.2566832

[34] W. Oizumi, L. Sousa, A. Oliveira, L. Carvalho, A. Garcia, T. Colanzi,
and R. Oliveira, “On the density and diversity of degradation symptoms
in refactored classes: A multi-case study,” in 2019 IEEE 30th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), 2019,
pp. 346–357.

[35] M. Alenezi and M. Zarour, “An empirical study of bad smells during
software evolution using designite tool,” i-manager’s Journal on Soft-
ware Engineering, vol. 12, pp. 12–27, 2018.

[36] A.-M. Chaniotaki and T. Sharma, “Data, scripts, and other relevant
information for the pareto principle analysis,” Feb. 2021. [Online].
Available: https://github.com/tushartushar/ParetoPrincipleArchSmells

[37] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating
architectural decay and sustainability of software systems,” in 2016
13th Working IEEE/IFIP Conference on Software Architecture (WICSA),
April 2016, pp. 178–181.

[38] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical
debt: A unified model and systematic literature review,” Journal of
Systems and Software, vol. 135, pp. 1 – 16, 2018.

[39] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, Nov
2012.

[40] E. Guimaraes, A. Garcia, and Y. Cai, “Exploring blueprints on the
prioritization of architecturally relevant code anomalies – a controlled
experiment,” in 2014 IEEE 38th Annual Computer Software and Appli-
cations Conference, July 2014, pp. 344–353.

[41] M. Iqbal and M. Rizwan, “Application of 80/20 rule in software en-
gineering waterfall model,” in International Conference on Information
and Communication Technologies. IEEE, 2009, pp. 223–228.


