
House of Cards:
Code Smells in Open-source C# Repositories

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis
Dept of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
{tushar,mfg,dds}@aueb.gr

Abstract—Background: Code smells are indicators of quality
problems that make a software hard to maintain and evolve.
Given the importance of smells in the source code’s maintain-
ability, many studies have explored the characteristics of smells
and analyzed their effects on the software’s quality.

Aim: We aim to investigate fundamental characteristics of code
smells through an empirical study on frequently occurring smells
that examines inter-category and intra-category correlation be-
tween design and implementation smells.

Method: The study mines 19 design smells and 11 implemen-
tation smells in 1988 C# repositories containing more than 49
million lines of code. The mined data are statistically analyzed
using methods such as Spearman’s correlation and presented
through hexbin and scatter plots.

Results: We find that unutilized abstraction and magic number
smells are the most frequently occurring smells in C# code. Our
results also show that implementation and design smells exhibit
strong inter-category correlation. The results of co-occurrence
analysis imply that whenever unutilized abstraction or magic
number smells are found, it is very likely to find other smells
from the same smell category in the project.

Conclusions: Our experiment shows high average smell density
(14.7 and 55.8 for design and implementation smells respectively)
for open source C# programs. Such high smell densities turn
a software system into a house of cards reflecting the fragility
introduced in the system. Our study advocates greater awareness
of smells and the adoption of regular refactoring within the
developer community to avoid turning software into a house of
cards.

Keywords-Code smells, Implementation smells, Design smells,
Code quality, Maintainability, C#.

I. INTRODUCTION

Code smells indicate the presence of quality problems
impacting mainly the maintainability of a software system
[1], [2]. The presence of an excessive number of smells in
a software system turns it into a house of cards which is hard
to maintain and evolve.

Code smells and their impact on various aspects of software
development have been explored and discussed extensively
[3]–[6]. Many source code mining studies have examined code
smells [7]–[9]. Further, the impact of smells on dimensions
such as change-proneness [10], [11], defect-proneness [12],
[13], and systems’ quality [6] have been explored.

However, we observe the following gaps in the existing
mining studies on smells:

• Existing mining studies on smells lack scale; the majority
of the studies analyze a few subject systems (<10). To
the best of our knowledge, Fontana et al. [6] analyzed
68 subject systems which are the maximum number of
subject systems analyzed in this context. Generalizing
a theory based on a few subject systems presents a
considerable threat to validity.

• Existing mining studies also do poorly with respect to
breadth of the experiment i.e., number of smells analyzed
in the study. Most of the existing mining studies consider
a small sub-set of known smells. This under-analysis
makes a mining study incomplete or even incorrect.

• Most of the mining studies on code smells are per-
formed on the Java programming language. The under-
representation of other programming languages makes us
wonder whether the results of the existing mining studies
are applicable in other similar languages.

In this paper, we aim to fill these gaps and reveal fun-
damental yet interesting characteristics of code smells in C#
projects. These characteristics include — frequently occurring
smells, inter-category and intra-category correlation between
design and implementation smells, and the relationship of
smell density with lines of code in each repository.

By exploring relationships between smell types we seek
to find and comprehend models of smell occurrence and
expansion. For instance, smell types with high probability may
lead us to explore causal relationship among smells. Knowing
the commonly occurring smells together may also be used to
improve accuracy of smell detection mechanisms. This study
can benefit software developers to help them understand the
characteristics of relatively a wide range of smells and their
potential implications. Raising the awareness is the first step
towards cleaner code and less technical debt.

Based on the granularity and scope, smells can be clas-
sified as implementation smells [1], design smells [2], and
architecture smells [14]. We limit our discussion of smells to
implementation and design smells in this paper.

II. OVERVIEW OF THE STUDY

We formulated the following research questions towards the
quality analysis goal of C# projects.



RQ1. What is the distribution of design and implementation
smells in C# code? We investigate the distribution of smells
to find out whether there exists a set of implementation and
design smells that occur more frequently w.r.t. another set of
smells.

RQ2. What is the relationship between the occurrence of
design smells and implementation smells? We study the degree
of inter-category co-occurrence between design smells and
implementation smells.

RQ3. Is the principle of coexistence applicable to smells in
C# projects? It is commonly believed that patterns (and smells)
co-exist [2], [15] i.e., if we find one smell, it is very likely
that we will find many more smells around it. We investigate
the intra-category co-occurrences of a smell with other smells
to find out whether and to what degree the folklore is true.

RQ4. Does smell density depend on the size of the C#
repository? We investigate the relationship between the size
of a C# project repository and associated smell density to
find out how the smell density changes as the size of a C#
project increases for both the smell categories. Smell density
is a normalized metric that represents the average number of
smells identified per thousand lines of code.

III. STUDY DESIGN

In this section, we present the method that we employed to
download and analyze source code repositories.

A. Mining GitHub repositories

We follow the procedure given below to select and down-
load our subject systems.

1) We employ RepoReaper [16] to select curated GitHub
repositories to download. RepoReaper assesses 10 di-
mensions (architecture quality, community, continuous
integration, documentation, history, license, manage-
ment, state (active or dormant), unit tests, and num-
ber of stars) of each repository and assigns a score
corresponding to each dimension. We select all the
repositories containing C# code where at least 8 out of
10 RepoReaper’s dimensions have favourable score. We
consider a score favourable if it has true, active (for the
state dimension), assigned stars greater than 10, or value
greater than zero for rest of the dimensions.

2) With this criterion, we download more than 2400 repos-
itories. We are able to analyze 1988 repositories using
Designite [17]. Some of the repositories couldn’t be
analyzed due to either missing external dependencies
or custom build mechanism (i.e., missing standard C#
project files).

3) We exclude test code from the analysis since test code
contains a different type of smells (i.e., test smells [18])
which is not in the scope of this paper.

Table I summarizes the characteristics of the analyzed
repositories. In the table, LOC, WMC, NC, and DIT refers
to Lines Of Code, Weighted Method per Class, Number of
Children, and Depth of Inheritance Tree respectively [19].

TABLE I
CHARACTERISTICS OF THE ANALYZED REPOSITORIES — AVERAGES ARE

COMPUTED PER TYPE; MEDIAN LOC IS COMPUTED OVER REPOSITORY

Attributes Values Attributes Values
Repositories 1,988 Median LOC 4391
Type declarations 436,832 Average methods 5.86
Method declarations 2,265,971 Average fields 2.42
Lines of code (C# only) 49,303,314 Average properties 2.12

Average WMC 12.43
Average NC 0.28
Average DIT 0.31

B. Analyzing C# Repositories

We require a tool that detects a wide variety of design and
implementation smells in C# code and at the same time allows
us to perform smell mining on a large number of repositories
automatically. We employ Designite1 [17] (version 1.47.3) that
supports detection of 19 design and 11 implementation smells.
Further, it offers a customizable mechanism (i.e., console
application and capability to specify projects to be analyzed in
a batch file with other required parameters) to automatically
analyze C# code in each repository.

Tables II and III provide a brief description of detected
design smells [2] and implementation smells [1], [20]–[22]
respectively. We assign an acronym to each smell — design
smell acronyms start with ‘D’ and implementation smell
acronyms start with ‘I’ to make referencing easier.

C. Manual Verification

We chose two repositories randomly from the selected
repositories and analyzed all the implementation and design
smells detected by the tool manually. The selected reposito-
ries were RestSharp2 (191KLOC) and rtable3 (12KLOC). We
analyzed 261 design smells and 1863 implementation smells
detected by Designite in these repositories manually. We found
11 instances of false positives (10 instances belonging to
complex method and one instance belonging to long method
smell) in implementation smells category and 2 instances of
false positives (both belonging to unutilized abstraction) in
design smells category.

The tool generates false positive instances of unutilized
abstraction majorly due to the project which is using the
abstraction is not included in the analysis (for example a
test project). The reason behind the generated false positive
instances belonging to complex method smell can be traced
back to slightly different algorithm used to compute cyclo-
matic complexity by the tool. In summary, the tool exhibits
very low false positive rate and is suitable for a large scale
mining study.

IV. RESULTS AND DISCUSSION

This section presents the results gathered from the analysis
and our observations w.r.t. each research question addressed.

1http://www.designite-tools.com
2https://github.com/restsharp
3https://github.com/Azure/rtable



TABLE II
DESCRIPTION OF DETECTED DESIGN SMELLS AND THEIR DISTRIBUTION

Acronym Design smell Brief description #Instances Percentage
DBH Broken Hierarchy a supertype and its subtype conceptually do not share an “IS-A” relationship 20,332 4.8%
DBM Broken Modularization data and/or methods that ideally should have been localized into a single 15,624 3.7%

abstraction are separated and spread across multiple abstractions
DCM Cyclically-dependent two or more abstractions depend on each other directly or indirectly 52,436 12.5%

Modularization
DCH Cyclic Hierarchy a supertype in a hierarchy depends on any of its subtypes 4,342 1.0%
DDH Deep Hierarchy an inheritance hierarchy is “excessively” deep 179 0.04%
DDE Deficient Encapsulation the declared accessibility of one or more members of an abstraction is more 30,214 7.2%

permissive than actually required
DDA Duplicate Abstraction two or more abstractions have identical names or identical implementation 73,992 17.6%
DHM Hub-like Modularization an abstraction has high incoming and outgoing dependencies 676 0.2%
DIA Imperative Abstraction an operation is turned into a class 11,790 2.8%
DIM Insufficient Modularization an abstraction exists that has not been completely decomposed, and a 26,429 6.3%

further decomposition could reduce its size, or implementation complexity
DMH Missing Hierarchy conditional logic to explicitly manage variation in behaviour 2,598 0.6%
DMA Multifaceted Abstraction an abstraction has more than one responsibility assigned to it 1,236 0.3%
DMH Multipath Hierarchy a subtype inherits both directly as well as indirectly from a supertype 1,454 0.3%
DRH Rebellious Hierarchy a subtype rejects the methods provided by its supertype(s) 11,794 2.8%
DUE Unexploited Encapsulation client code uses explicit type checks 6,964 1.6%
DUH Unfactored Hierarchy there is unnecessary duplication among types in a hierarchy 20,962 5.0%
DUA Unnecessary Abstraction an abstraction that is actually not needed 44,583 10.6%
DTA Unutilized Abstraction an abstraction is left unused 90,786 21.6%
DWH Wide Hierarchy an inheritance hierarchy is “too” wide 3,140 0.7%

TABLE III
DESCRIPTION OF DETECTED IMPLEMENTATION SMELLS AND THEIR DISTRIBUTION

Acronym Implementation smell Brief description #Instances Percentage
ICC Complex Conditional a complex conditional statement 21,643 0.6%
ICM Complex Method a method with high cyclomatic complexity 95,244 2.5%
IDC Duplicate Code a code clone within a method 17,921 0.5%
IEC Empty Catch Block a catch block of an exception is empty 14,560 0.4%
ILI Long Identifier an identifier with excessive length 7,741 0.2%
ILM Long Method a method is excessively long 17,521 0.5%
ILP Long Parameter List a method has long parameter list 79,899 2.1%
ILS Long Statement an excessive long statement 462,491 12.4%
IMN Magic Number an unexplained number is used in an expression 2,993,353 80.0%
IMD Missing Default a switch statement does not contain a default case 23,497 0.6%
IVC Virtual Method Call from Constructor a constructor calls a virtual method 4,545 0.1%

RQ1. What is the distribution of design and implementation
smells in C# code?

Approach: We compute the total number of detected smells
for all the smells belonging to both implementation and design
smell categories.

Results: Table II and III list the total number of instances
detected for each smell. DTA (unutilized abstraction) and DCM
(cyclic-dependency modularization) are the most frequently
occurring design smells. On the other hand, DDH (deep hierar-
chy) is the least occurring design smell. To analyze it deeper,
we computed the average number of children per class; a mere
0.28 indicates poor application of the principle of hierarchy
in practice.

From the implementation smells side, IMN (magic number)
and ILS (long statement) are the most frequently occurring
smells. On the other hand, IVC (virtual method call from
constructor) is the least occurring implementation smell. We
observe that analyzed C# code on an average contains one
magic number per 16 lines of code. It is surprizing to see
a large number of magic number smells despite the fact that
Designite excludes literals 0 and 1 while detecting the smell.

Interestingly, DDA (duplicate abstraction) is one of the
most frequently occurring design smells but IDC (duplicate
code) is one of the least frequently occurring implementa-
tion smells. It is because the scope of both the smells differs
significantly; clones belonging to DDA occur anywhere in a
project (but not in the same method) and clones belonging to
IDC only occur within a method.

Implications: A high number of unutilized abstraction
indicates that developers don’t delete the obsolete code ei-
ther knowingly or unknowingly. Such practices unnecessarily
increase the cognitive load on the developers. Further, a large
number of duplication also indicates poor application of the
principle of abstraction and lack of refactoring.

RQ2. What is the relationship between the occurrence of
design smells and implementation smells?

Approach: We compute the total instances of implemen-
tation and design smells in each repository. We then com-
pute Spearman’s correlation coefficient between the detected
instances of implementation and design smells for each repos-
itory. We also compute total types of smells detected in
each repository belonging to both the categories and compute



Spearman’s correlation coefficient.
Results: Figure 1 presents a scatter graph showing the co-

occurrence between total instances of detected implementation
and design smells. The Spearman’s correlation coefficient
between number of implementation and design smells detected
is 0.78059 (with p-value < 2.2e − 16). It shows that high
volume of design (or implementation) smells is a very
strong indication of the presence of high volume of
implementation (or design) smells in a C# project.

0 1000 2000 3000 4000 5000

0
20
0

40
0

60
0

80
0

10
00

Implementation smells

D
es

ig
n 

S
m

el
ls

Fig. 1. Co-occurrence between detected implementation and design smell
instances

0 5 10 15 20

0

2

4

6

8

10

12

Design Smells

Im
pl

em
en

ta
tio

n 
S

m
el

ls

1
8
15
22
30
37
44
51
58
65
72
79
86
94
101
108
115

Counts

Fig. 2. Co-occurrence between detected implementation and design smell
types

Further, we compute total types of smells, apart from total
smell instances, detected in each repository belonging to both
smells categories. Figure 2 shows a hexbin plot showing the
co-occurrence between detected types of implementation and
design smells. We get 0.80659 (with p-value < 2.2e− 16) as
the Spearman’s correlation coefficient in this case. It strongly
suggests that as the types of detected implementation (or
design) smells increases, the types of detected design (or
implementation) smells also increases.

Implications: Let us understand an implication of such a
strong co-occurrence. Existing tools (such as NDepend4 and
SonarQube5 majorly detect implementation issues. Due to this
limitation, a software development team using these tools
perceive only a limited set of quality issues and thus issues at
higher granularities go unnoticed. Our results shows that the
presence of implementation smells is a strong indication of
design smells and thus the results emphasize the need to pay
attention to smells at all granularities.

RQ3. Is the principle of coexistence applicable to smells in
C# projects?

Approach: We compute the average intra-category co-
occurrence for each smell. Co-occurrence is commonly used
in the biogeography; we use the co-occurrence index used
by Connor et al. [23]. The following equation computes co-
occurrence coefficient C between smells s1 and s2.

C(s1, s2) =
n1× n2

N
(1)

Here, n1 and n2 are the number of detected instances of smells
s1 and s2 respectively. N is the total number of detected
smells in the repository.

Results: Figures 3 and 4 present the average co-occurrence
for each smell for both the smell categories respectively. DTA
(unutilized abstraction) and DDH (deep hierarchy) show the
highest and lowest co-occurrence respectively in the design
smells category. Similarly, figure 4 shows that IMN (magic
number) and IVC (virtual method call from constructor) ex-
hibit the highest and lowest co-occurrence respectively in the
implementation smells category.

0.31

1.18

0.03

2.4

1.96

0.8
0.18 0.41

0.7
0.02

1.39

0.08 0 0.04 0.11 0.31 0.55 0.07 0.54

Fig. 3. Average co-occurrence (intra-category) for design smells

It implies that whenever unutilized abstraction or magic
number smells are found in C# code, it is very likely to find
other smells from the same smell category in the project.
On the other hand, the smells deep hierarchy and virtual
method call from constructor occur more independently. Co-
occurrence of implementation smells (figure 4) show a large
variation due to the huge difference in number of detected
instances for each smell in the category.

Implications: These results reveal different smell expansion
models where some smell types arise independently and others
often occur as a group. This information is useful to developers
when applying code refactoring with the purpose of removing

4http://www.ndepend.com/
5https://www.sonarqube.org/



337.65
1257.03

1616.11
65.59

70258.65
356.79

55.32
242.24

293216.29

6764.83
161.9

ILM ICM ILP ILI ILS ICC IVC IEC IMN IDC IMD

Fig. 4. Average co-occurrence (intra-category) for implementation smells

0 50000 100000 150000 200000

0
10
0

20
0

30
0

40
0

50
0

LOC

Im
pl

em
en

ta
tio

n 
S

m
el

ls
 D

en
si

ty

Fig. 5. Smell density for implementation smells against lines of code

smells because depending on the smell type they might have
to expect other types of smells around it.

RQ4. Does smell density depend on the size of the C#
repository?

Approach: We draw scatter plots between lines of code in
a repository and the corresponding smell density for both the
smell categories. We also computed Spearman’s correlation
coefficient for both the categories.

Results:
Figure 5 and figure 6 show the distribution of smell density

for implementation and design smells against lines of code. A
visual inspection of the above graphs shows that distribution
in figure 5 is more scattered and random than the distribution
shown in figure 6. We compute Spearman’s correlation coeffi-
cient between implementation as well as design smell density
and LOC. The analysis reports 0.27800 and −0.25426 as cor-
relation coefficient (p-value < 2.2e−16) w.r.t. implementation
and design smell density respectively. The results show a weak
positive correlation for implementation smell density and weak
negative correlation for design smell density with size of the
project. Given the low values for both the coefficients, it is
undecidable whether smell density depends on the size of the
project.

Implications: According to the current study no strong
correlation is evident between the number of smell occurrences
and project size. If we assume that our sample is representative

0 50000 100000 150000 200000

0
20

40
60

80
10
0

LOC

D
es

ig
n 

S
m

el
ls

 D
en

si
ty

Fig. 6. Smell density for design smells against lines of code

of the population of C# projects then this means that big
projects do not necessarily suffer from higher smell density.

V. RELATED WORK

Code smells [1], [2] are symptoms of software quality
issues that affect a project’s maintainability and other quality
attributes. Many aspects of smells have been investigated
through empirical studies, such as the causes behind smells [3],
the correlations between them [6], and the effect of refactoring
actions on smells [9], [24]. The impact of smells on software
quality has received considerable attention — some of the
examined software quality dimensions are software mainte-
nance [4], [5], change-proneness [10], [11], defect-proneness
[12], [13], and systems’ quality [6].

Code smells can manifest in different scopes, that is, ar-
chitecture [14], design [2], and implementation [1]. Usually
smells are studied in categories according to the scope they
manifest in. In this paper we mine design and implementation
code smells from approximately two thousand C# repositories
using static analysis.

Yamashita et al. [4] explored the co-existence of smells
within the same as well as across categories and revealed their
impact on maintainability. Similarly, the co-existence of the
God class and God method smells and their effect has been
investigated by Abbes et al. [25]. The relationship between
smell density and project size has been previously studied in
the context of configuration management code [22].

Our study examines the intra-category and inter-category
co-occurrence of smells and smell density over project size for
30 smells in 49 million lines of C# code. The posed research
questions combined with the scale of the study and the breadth
of the analyzed smells differentiate it from the related work.

Finally, there have been a few attempts to study code smells
for the C# language [26], [27]. However, they lack both scale
in terms of the number of projects they process and breadth
of analysis in terms of the number of smells they examine.



VI. THREATS TO VALIDITY

Construct validity concerns the appropriateness of the ob-
servations made on the basis of measurements. False positives
are always associated with static code analysis and so are
applicable to the tool that we employed in this study. However,
our manual verification (Section III-C) shows that the tool
exhibits very low false positive cases.

External validity concerns generalizability and repeatability
of the produced results. Our study analyzes only open-source
C# projects. Given that majority of existing research target
Java [7], [9], our study complements the current literature.

VII. CONCLUSIONS

In this paper, we analyzed 1988 repositories containing
more than 49 millions lines of C# code and detected 30
types of smells (19 design and 11 implementation smells). The
goal of this study is to reveal basic characteristics concerning
code smells in C# projects when the scale (i.e., number of
repositories) and the breadth (i.e., number of detectable smells)
of the analysis are large. We find that unutilized abstraction
and magic number are the most frequently occurring design
and implementation smells respectively. We observe a high
degree of correlation between the number of detected instances
of implementation and design smells. We find that smells
unutilized abstraction and magic number show the highest co-
occurrence among the other smells in their category. Finally,
our analysis observes that smell density and lines of code in
a C# project do not show a strong correlation.

A house of cards is analogous to a fragile system which is
very difficult to change and extend. Our experiment shows av-
erage density of design smells 14.7 and implementation smells
55.8. Further, the highest recorded density for projects larger
than 1000 LOC is 95 and 1893 for design and implementation
smells respectively. A software system is turned into a house
of cards with such high smell densities.

ACKNOWLEDGMENTS

This work is funded by the SENECA project, which is part
of the Marie Skłodowska-Curie Innovative Training Networks
(ITN-EID) under grant agreement number 642954.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Programs,
1st ed. Addison-Wesley Professional, 1999.

[2] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[3] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell
bad,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 403–414.

[4] A. Yamashita and L. Moonen, “To what extent can maintenance prob-
lems be predicted by code smell detection? – An empirical study,”
Information and Software Technology, vol. 55, no. 12, pp. 2223–2242,
2013.

[5] A. Yamashita and S. Counsell, “Code smells as system-level indicators
of maintainability: An empirical study,” The Journal of System and
Software, vol. 86, no. 10, pp. 2639–2653, Oct. 2013.

[6] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka,
“Investigating the Impact of Code Smells on System’s Quality: An
Empirical Study on Systems of Different Application Domains,” in
2013 IEEE International Conference on Software Maintenance (ICSM).
IEEE, Sep. 2013, pp. 260–269.

[7] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An
experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, Jan.
2015.

[8] S. Fu and B. Shen, “Code Bad Smell Detection through Evolutionary
Data Mining,” in International Symposium on Empirical Software En-
gineering and Measurement. IEEE, Nov. 2015, pp. 41–49.

[9] T. Saika, E. Choi, N. Yoshida, S. Haruna, and K. Inoue, “Do Developers
Focus on Severe Code Smells?” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2016, pp. 1–3.

[10] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,” in
2009 3rd International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, Aug. 2009, pp. 390–400.

[11] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study
of the Impact of Code Smells on Software Change-proneness,” in 2009
16th Working Conference on Reverse Engineering, Ecole Polytechnique
de Montreal, Montreal, Canada. IEEE, Dec. 2009, pp. 75–84.

[12] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems and Software, vol. 80, no. 7, pp. 1120–1128, Jul.
2007.

[13] L. Guerrouj, Z. Kermansaravi, V. Arnaoudova, B. C. M. Fung, F. Khomh,
G. Antoniol, and Y.-G. Guéhéneuc, “Investigating the relation between
lexical smells and change- and fault-proneness: an empirical study,”
Software Quality Journal, pp. 1–30, May 2016.

[14] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
Architectural Bad Smells,” in CSMR ’09: Proceedings of the 2009
European Conference on Software Maintenance and Reengineering.
IEEE Computer Society, Mar. 2009, pp. 255–258.

[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of Patterns,
1st ed. Wiley, 1996.

[16] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” preprint available at PeerJ Preprints
4:e2617v1 https://doi.org/10.7287/peerj.preprints.2617v1.

[17] T. Sharma, “Designite: A Customizable Tool for Smell Mining in C#
Repositories,” 10th Seminar on Advanced Techniques and Tools for
Software Evolution, Madrid, Spain, 2017.

[18] A. v. Deursen, L. Moonen, A. v. d. Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the 2nd International Conference on
Extreme Programming and Flexible Processes (XP2001), M. Marchesi,
Ed. University of Cagliari, 2001, pp. 92–95.

[19] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476–493, Jun 1994.

[20] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of lexicon
bad smells on concept location in source code,” in Proceedings - 11th
IEEE International Working Conference on Source Code Analysis and
Manipulation, SCAM 2011, Fondazione Bruno Kessler, Trento, Italy.
IEEE, Nov. 2011, pp. 125–134.

[21] J. Bloch, Effective Java (2Nd Edition) (The Java Series), 2nd ed.
Prentice Hall PTR, 2008.

[22] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Workshop on
Mining Software Repositories, ser. MSR’16, 2016, pp. 189–200.

[23] E. Connor and D. Simberloff, “Species number and compositional
similarity of the galapagos flora and avifauna,” Ecological Monographs,
no. 48, pp. 219–248, 1978.

[24] G. Czibula, Z. Marian, and I. G. Czibula, “Detecting software design
defects using relational association rule mining,” Knowledge and Infor-
mation Systems, vol. 42, no. 3, pp. 545–577, Mar. 2015.

[25] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, ser. CSMR ’11. IEEE Computer
Society, 2011, pp. 181–190.



[26] S. Counsell, R. M. Hierons, H. Hamza, S. Black, and M. Durrand,
“Exploring the eradication of code smells: An empirical and theoretical
perspective,” Adv. Software Engineering, vol. 2010, pp. 820 103:1–
820 103:12, 2010.

[27] M. Gatrell, S. Counsell, and T. Hall, “Empirical Support for Two
Refactoring Studies Using Commercial C# Software,” in Proceedings
of the 13th International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE’09. British Computer Society, 2009,
pp. 1–10.


