
Designite - A Software Design Quality Assessment Tool

Tushar Sharma
Athens University of

Economics and Business
Athens, Greece

tushar@aueb.gr

Pratibha Mishra
Designite

Bangalore, India
pratibham0709@gmail.com

Rohit Tiwari
Designite

Bangalore, India
trohit9217@gmail.com

ABSTRACT
Poor design quality and huge technical debt are common is-
sues perceived in real-life software projects. Design smells
are indicators of poor design quality and the volume of de-
sign smells found could be treated as the design debt of the
software system. The existing smell detection tools focus
largely on implementation smells and do not reveal a com-
prehensive set of smells that arise at design level. In this
paper, we present Designite - a software design quality as-
sessment tool. It not only supports comprehensive design
smells detection but also provides a detailed metrics analy-
sis. Further, it offers various features to help identify issues
contributing to design debt and improve the design quality
of the analyzed software system.

CCS Concepts
•Software and its engineering → Software mainte-
nance tools;

Keywords
Design smells, refactoring, dsm, technical debt, design debt.

1. INTRODUCTION
Software design is an inherently complex activity that re-

quires sound knowledge of design principles and more im-
portantly their skilful application. A study of five orga-
nizations [6] reported the number of software defects that
can be traced back to errors in software design as high as
64%. This statistic highlights the importance of software
design in software development. Despite this, we have wit-
nessed real-life projects suffering from poor design quality
and huge technical debt [13]. Such issues significantly re-
duce maintainability of the software.

“Design smells are certain structures in the design that
indicate violation of fundamental design principles and neg-
atively impact design quality” [15]. Design smells are indica-
tors of poor design quality and the volume of design smells

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Bridge’16, May 17 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4153-0/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896935.2896938

found could be treated as the design debt (a component of
the overall technical debt) of a software system. Therefore,
identifying design smells and refactoring them could lead us
to a better design quality.

Various tools are available to compute source code met-
rics and even smells. Most of them use metrics as a primary
mean to identify smells. Although, some of the design smells
can be inferred from the metrics, a deeper source code anal-
ysis is required to identify many design smells. Further,
the existing smell detection tools focus on implementation
smells largely and do not reveal a comprehensive set of de-
sign smells. Therefore, a tool that explicitly detects design
smells and provides mechanisms to assess design quality is
required but missing.

Designite [1] is a software design quality assessment tool.
It offers a comprehensive support to detect a wide variety
of design smells and computes various metrics at different
granularities. It provides a simple and interactive imple-
mentation of dsm (Dependency Structure Matrix) to help
analyze the dependencies among the source code entities.
Additionally, the tool also supports features such as hotspot
analysis, integration with external tools via its console appli-
cation, code-clone detection, and export the inferred results
to MS excel sheets. With all these features, Designite helps
us assess the design quality of a software system, identifies
design debt instances, and enables improvements in design
agility of the software.

Rest of the paper is organized as follows: Section 2 dis-
cusses the related work, Section 3 describes the features as
well as some implementation details of Designite, Section
4 presents evaluation results carried out on three versions
of three open-source projects, and Section 5 concludes and
explores possible future directions.

2. RELATED WORK
Although, a great amount of work has been done to cata-

log smells at different abstraction levels [2], the present set
of available tools lack the focus on design quality. The rest
of the section discusses related work with respect to two
commonly used dimensions (viz. metrics and design smells)
to perceive design quality.

Software metrics reveal characteristics of a software and
could provide insights towards code quality of the software.
Many metrics (such as lcom, cbo, Fan-in, and Fan-out) help
us understand the design aspects of the software. Currently,
we can avail services of many metrics tools to compute these
metrics. However, metrics tools prove insufficient when one
wants to perform a detailed design assessment for a given

software due to the following reasons:

• Metrics do not cover many aspects related to design
and hence many design smells cannot be identified just
by using commonly known metrics (for example, Re-
bellious Hierarchy [15]).

• Metrics require another level of interpretation to de-
sign smells. This interpretation is an extra step, which
is directly not supported by the existing metrics tools.

• Metrics tools generate metrics data for a software; how-
ever, they do not offer mechanisms to analyze the gen-
erated data for the software holistically. For instance,
revealing metric violations and threshold customiza-
tion is also often not supported directly.

There are a few tools available that detect code smells. For
example, NDepend [8] (for C#) detects many smells apart
from computing metrics. For Java, JDeodorant [5] detects a
few smells. Similarly, Resharper [12] provides many rules to
improve code quality. However, such tools do not classify the
smells based on the abstraction levels and more importantly,
they do not support enough smells or rules to assess design
quality sufficiently. For instance, JDeodorant only support
detection of 5 smells and not all the supported smells can
be classified as design smells. Therefore, a tool focusing on
design quality with comprehensive support for design smells
is required and Designite is an attempt towards the goal.

3. DESIGNITE
Designite takes source code written in C# as input, an-

alyzes it, and presents design assessment information inter-
actively. Designite uses NRefactory [9] to parse C# code
and prepares Abstract Syntax Tree (ast). Designite ac-
cesses the ast and prepares a simple hierarchical meta-
model. The meta-model contains objects of projects con-
taining information about analyzed projects. In turn, each
project-object contains the objects of namespaces imple-
mented in the project. Similarly, each namespace-object
contains objects of types that are part of the namespace
and so on. The meta-model captures the required source
code information, which is used by Designite, for instance,
to infer design smells and compute metrics. Designite also
carries out a code-clone detection analysis that identifies sets
of code-clones present in the software.

An analysis can be initiated by either choosing a .net
solution file or providing a batch file that contains path of a
C# project per line. After the analysis, Designite presents
a summary of the analysis as shown in Figure 1.

The rest of the section discusses key features of the tool
along with their implementation details briefly.

3.1 Design Smell Detection
Once the source code meta-model is prepared, Designite

infers design smells from the meta-model. The design smells
catalog suggested by Girish et al. [15] is considered the most
comprehensive catalog for structural design smells. The cat-
alog consists of 25 design smells classified based on the design
principle (viz. Abstraction, Encapsulation, Modularization,
and Hierarchy) they violate. Currently, Designite detects
19 design smells from the catalog. Table 2 lists the design
smells supported by Designite and corresponding definitions.

Figure 1: Analysis summary produced by Designite

Some of the smells are relatively easier to detect. For in-
stance, Multifaceted Abstraction [15] is detected using met-
ric lcom (Lack of Cohesion between Methods). Similarly,
metrics nopm (Number Of Public Methods), nof (Num-
ber Of Fields), and wmc (Weighted Methods per Class) are
used to detect Insufficient Modularization [15]. However,
many design smells such as Rebellious Hierarchy [15] and
Cyclically-dependent Modularization [15] require a deeper
source code analysis beyond the standard software metrics.
It is important to note that there are a few design smells,
for example, Missing Encapsulation [15] and Speculative Hi-
erarchy [15], that are extremely difficult to detect if not im-
possible using static analysis.

The detected design smells are presented using a sunburst
diagram (see Figure 2). The sunburst diagram is an in-
teractive, beautiful, yet effective way to navigate and filter
the detected design smells. Designite’s sunburst diagram
has four rings. Each ring represents a dimension associated
with detected design smells. The first ring shows the distri-
bution of smells based on the violated principle. The second
ring represents the distribution of specific design smells de-
tected. Similarly, the third and fourth rings represent the
namespace and the class respectively in which the specific
design smell has been detected. If one clicks on the ab-
straction fragment, only the abstraction smells are shown in
the grid below. Similarly, if one wish to see only Deficient
Encapsulation smell instances, she can click on the relevant
fragment to achieve the same. Further, the description as
well as the cause of a smell can be seen in the document pan
upon selecting a row in the grid.

Figure 2: Sunburst representation of design smells

Table 1: Design Smells Supported by Designite and Their Corresponding Definitions
Design Smell Definition
Unnecessary Abstraction This smell occurs when an abstraction which is actually not needed (and thus could have

been avoided) gets introduced in a software design.
Imperative Abstraction This smell arises when an operation is turned into a class.
Multifaceted Abstraction This smell arises when an abstraction has more than one responsibility assigned to it.
Unutilized Abstraction This smell arises when an abstraction is left unused (either not directly used or not reachable).
Duplicate Abstraction This smell arises when two or more abstractions have identical names and/or identical

implementation.
Deficient Encapsulation This smell occurs when the declared accessibility of one or more members of an abstraction

is more permissive than actually required.
Unexloited This smell arises when client code uses explicit type checks instead of exploiting the variation
Encapsulation in types already encapsulated within a hierarchy.
Broken Modularization This smell arises when data and/or methods that ideally should have been localized into a single

abstraction are separated and spread across multiple abstractions.
Insufficient This smell arises when an abstraction exists that has not been completely decomposed and a
Modularization further decomposition could reduce its size, implementation complexity, or both.
Hub-like This smell arises when an abstraction has dependencies (both incoming and outgoing) with
Modularization a large number of other abstractions.
Cyclically-dependent This smell arises when two or more abstractions depend on each other directly or indirectly.
Modularization
Wide Hierarchy This smell arises when an inheritance hierarchy is too wide indicating that intermediate

abstractions may be missing.
Deep Hierarchy This smell arises when an inheritance hierarchy is excessively deep.
Multipath Hierarchy This smell arises when a subtype inherits both directly as well as indirectly from a supertype

leading to unnecessary inheritance paths in the hierarchy.
Cyclic Hierarchy This smell arises when a supertype in a hierarchy depends on any of its subtypes.
Rebellious Hierarchy This smell arises when a subtype rejects the methods provided by its supertype(s).
Unfactored Hierarchy This smell arises when there is unnecessary duplication among types in a hierarchy.
Missing Hierarchy This smell arises when a code segment uses conditional logic to explicitly manage

variation in behavior.
Broken Hierarchy This smell arises when a supertype and its subtype conceptually do not share an is-a

relationship resulting in broken substitutability.

3.2 Detailed Metric Analysis
Designite computes 30 commonly used metrics at differ-

ent granularities (viz. analyzed projects or solution, project,
type, and method). The computed metrics at type and
method granularities are presented in the form of an in-
teractive pie chart (see Figure 3). The pie chart has four
partitions viz. green, yellow, orange, and red. Designite
shows the distribution of entities that fall in each partition
based on their values and pre-defined thresholds. The pie
chart provides an overall idea about the project code quality
from the selected metrics point of view instantly.

Figure 3: Detailed metric analysis by Designite

Additionally, the pie chart can also be used as a naviga-
tion and filtering mechanism. For instance, if one clicks on
the red pie, classes that are dangerously above the metric
threshold will only be shown in the grid below the pie chart.
One can see other associated metrics for the filtered classes
and may target them first for refactoring. Even further, one
can change the thresholds to customize the analysis.

3.3 Dependency Analysis Using DSM
Dependency Structure Matrix (dsm) is a compact and

visual representation of dependencies (with corresponding
strengths) among software entities. Designite offers a dsm
implementation that not only support dependency analysis
for types but also for namespaces and projects. Further, one
can change the scope as well to focus on a specific project.

3.4 Hotspot Analysis
Hotspot analysis is a derived analysis based on the de-

tected smells that highlights the classes suffering from var-
ious design smells and could be chosen for refactoring first.
For this inference, Designite chooses a smallest set of classes
that contribute up to 20% of the detected smells.

3.5 Code-clone Detection
Designite employs a block index-based clone detection al-

gorithm based on algorithm proposed by Hummel et al. [4]
with block size of 20 lines of code and detects type-1 clones.
Apart from revealing the code duplication, the identified

Table 2: Results of the Evaluation Performed on Three Open-source Projects
MonoDevelop NUnit GitExtensions

Version 4.2.0.7 5.6.3.3 5.10.0.871 2.9.1 2.9.4 2.9.7 2 2.33 2.48.05
LOC 605,422 674,869 674,501 31,595 89,286 613,045 33,175 60,037 86,528
Abstraction smells 2,977 3,047 3,108 326 843 5,529 82 150 234
Encapsulation smells 432 355 307 5 49 406 24 23 32
Modularization smells 1,949 1,769 1,803 33 70 512 69 159 309
Hierarchy smells 546 560 566 178 400 2,065 63 86 59
Smell density 10.39 9.92 9.84 14.18 16.26 13.88 7.17 6.96 7.33

clone-sets are also used in detecting design smells Duplicate
Abstraction [15] and Unfactored Hierarchy [15].

3.6 Integration with External Tools
Designite also supports a console application to execute

the analysis and generate output as an excel sheet or XML
file. The console application could be used to integrate De-
signite with in-place build process. It is useful to enforce
quality guidelines within a software development team or or-
ganization. Further, the smells detected by Designite could
be imported within SonarQube [14] using Designite plugin
[11] for consolidated technical debt management.

3.7 Export
Export is another important feature of the tool that could

be used to export the detected smells, generated metrics,
and identified code-clones to an MS excel sheet. This useful
feature allows one to share the result of the tool with other
stakeholders in his/her team and analyze the results further.

4. EVALUATION
In this section, we present our brief evaluation of the tool

on three open-source C# based projects viz. MonoDevelop
[7], Nunit [10], and GitExtensions [3]. The analysis has been
performed on three versions of each project to show how
these projects evolved from the perspective of design qual-
ity. Table 2 shows the detected design smells classified based
on the principle they violate and corresponding smell den-
sity, which is measured by total smells detected per thousand
lines of code. Apart from detecting design smells in individ-
ual versions, the result can also be used to infer insights from
the trend. For instance, although the codebase size of NUnit
increased significantly from version 2.9.4 to 2.9.7, the smell
density registers considerable decline in the newer version.

The evaluation shows that the tool can reveal structural
design smells even for large codebases and thus it could play
an effective role to improve software design quality.

5. CONCLUSIONS AND FUTURE WORK
The paper discussed a software design quality assessment

tool viz. Designite. The tool supports comprehensive de-
sign smells detection, detailed interactive metrics analysis,
dsm for allowing dependency analysis for three granularities,
code-clone detection, integration with external tools such as
SonarQube, and exporting detected smells and computed
metrics to an excel sheet. With all these features, Designite
assesses the design quality of a software system and helps
improve the design agility of the software. The evaluation
shows that the tool is able to detect various smells in large
codebases and thus is useful in reducing design debt of a

software. In future, we plan to carry out an extensive evalu-
ation to compute metrics such as recall and precision of the
tool. We also plan to extend the tool to support features
such as differential analysis and trend analysis.

6. REFERENCES
[1] Designite. http://www.designite-tools.com/, 2016.

[Online; accessed 22-Jan-2016].

[2] S. Ganesh, T. Sharma, and G. Suryanarayana.
Towards a principle-based classification of structural
design smells. Journal of Object Technology,
12(2):1:1–29, June 2013.

[3] GitExtensions. https://github.com/gitextensions,
2016. [Online; accessed 01-Feb-2016].

[4] B. Hummel, E. Juergens, L. Heinemann, and
M. Conradt. Index-based code clone detection:
incremental, distributed, scalable. In Software
Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1–9, Sept 2010.

[5] JDeodorant.
https://marketplace.eclipse.org/content/jdeodorant,
2016. [Online; accessed 01-Feb-2016].

[6] C. Jones. Software Quality in 2012: A Survey of the
State of the Art. http://sqgne.org/presentations
/2012-13/Jones-Sep-2012.pdf, 2012. [Online; accessed
01-Feb-2016].

[7] MonoDevelop.
https://github.com/mono/monodevelop, 2016.
[Online; accessed 01-Feb-2016].

[8] NDepend. http://www.ndepend.com/, 2016. [Online;
accessed 01-Feb-2016].

[9] NRefactory.
https://github.com/icsharpcode/NRefactory, 2016.
[Online; accessed 01-Feb-2016].

[10] Nunit. http://www.nunit.org/, 2016. [Online; accessed
01-Feb-2016].

[11] Designite’s plugin for SonarQube.
https://github.com/Designite/sonar-designite-plugin,
2016. [Online; accessed 01-Feb-2016].

[12] Resharper. https://www.jetbrains.com/resharper/,
2016. [Online; accessed 01-Feb-2016].

[13] T. Sharma, G. Suryanarayana, and G. Samarthyam.
Challenges to and solutions for refactoring adoption:
An industrial perspective. Software, IEEE,
32(6):44–51, Nov 2015.

[14] SonarQube. http://www.sonarqube.org/, 2016.
[Online; accessed 22-Jan-2016].

[15] G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann, 1 edition, 2014.

