How Deep 1s the Mud: Fathoming Architecture
Technical Debt Using Designite

Tushar Sharma
Dept of Management Science and Technology
Athens University of Economics and Business
Athens, Greece. tushar@aueb.gr

Abstract—The quality of software architecture is an important
concern for any software development team. Architecture smells
represent quality issues at architecture granularity. Identifying
and refactoring them periodically is a necessity to keep archi-
tecture quality high. We present Designite, a software design
quality assessment tool, that identifies seven well-known archi-
tecture smells. Along with the identification, the tool provides
supplementary information such as cause and responsible classes
for each identified smell instance to help developers understand
and refactor the smell. The tool is relevant and useful in both
research and practice context. Software developers may use it to
identify technical debt instances and to refactor them. On the
other hand, software engineering researchers may use the tool to
carry out large-scale empirical studies concerning code smells.

Demo URL: https://youtu.be/ogrAxQLKwsU
Index Terms—Architecture smells, code smells, technical debt,
maintainability, code quality, refactoring.

I. INTRODUCTION

Presence of code smells [1] indicates quality issues in a
software system. A large volume of smells in a software
system leads to poor maintainability that in turn makes the evo-
lution of the software difficult. Therefore, identifying smells
and refactoring them periodically is a necessity to keep the
technical debt [2] low.

Smells in production code are classified as implementation
smells, design smells, and architecture smells based on their
granularity, scope, and impact [1]. A software system’s archi-
tecture represents the key design decisions spanning multiple
components and having a system-level impact [3]. Therefore,
the impact of architecture smells is system-wide.

Identification of smells is the first step towards gauging
the technical debt accrued within a software system. Software
engineering community has proposed many smell detection
tools based on techniques such as metrics, heuristics, and
machine-learning [1]. However, despite some attempts [4], [S]
architecture smells detection is still not well supported by the
existing tools.

Designite [6] is a software design quality assessment tool.
Apart from supporting detection of a wide variety of design
and implementation smells, it detects seven well-known archi-
tecture smells for C# code. Other key features supported by
the tool are code metrics computation, dependency structure
matrix, trend analysis of smells, code-clone detection, integra-
tion with external tools via its console application, and hotspot
analysis. The tool provides interactive visualizations, such as

©0ICSharpCog |~' 28 & ® Cyclic dependency - 27
00ICSharpCo gl 2.
00ICSharpCor Y Unstable dependency - 9
! A = Feature Concentration
® Ambiguous interface - 0
Arch. Smells 2 |} ICSharpCode.NRefactory
® God component - 10
efactory.Documentatior
m Feature - 12
[\
T m Scattered functionality - 46
Anm v

s
Lc

Fig. 1. Presentation of identified smells in Designite

sunburst and treemap, for the detected smells and metrics.
Figure 1 shows the tool’s presentation of identified smells
using a sunburst diagram facilitating smells’ filtering and
navigation interactively. These visualization aids make it easier
for the users to comprehend the results of the analysis. The
tool offers free academic licenses for all academic purposes.

II. KEY FEATURES

In this section, we elaborate on the features offered by the
tool specific to architecture smells detection.

A. Architecture Smells Detection

We provide a brief description of the supported architecture
smells below.

¢ Cyclic Dependency: This smell arises when two or more
architecture components depend on each other directly or
indirectly [7].

o Unstable Dependency: According to Stable Dependen-
cies Principle (SDP) [9] the dependencies between pack-
ages should be realized in the direction of the stability
of the packages. Hence, a package should only depend
on packages that are more stable than it is. This smell
occurs when a component depends on other less stable
components [8].

o Ambiguous Interface: A component that offers only a
single, general entry-point into the component suffers
from this smell [10].



e God Component: This smell occurs when a component
is excessively large either in terms of lines of code or
number of classes [7].

o Feature Concentration: This smell occurs when a com-
ponent is not cohesive i.e., realizes more than one archi-
tectural concerns or features [11].

o Scattered Functionality: This smell arises when multi-
ple components are responsible for realizing an architec-
tural concern [10].

e Dense Structure: This smell arises when components
exhibit excessive and dense dependencies without any
particular structure [12].

B. Responsible Classes Identification

With each identified architecture smell, the tool shows cause
as well as responsible classes for the smell instance. The cause
summarizes rationale of the smell identification and the re-
sponsible classes show the classes that contribute non-trivially
to the occurrence of the smell’s instance. Identification of
the responsible classes significantly help developers approach
refactoring of these smells.

C. Tracking Smells

Identifying smells is only the first step towards better code
quality; a follow-up action is required to reap the benefits
of using a smell detection tool. In a real-world setting, upon
detection, a developer may neglect the smell, may decide to
discard it when she thinks the identified smell is a false-
positive or may not be in position to refactor it (for instance, in
case of legacy code), or may decide to refactor it (immediately
or in future). Designite offers a dedicated feature i.e., Action
Hub to track and manage identified smells and plan their
refactorings. Action Hub provides a consolidated view of all
the identified smells and their corresponding status (one of
the following: identified, drop, refactor, or wrong). This is a
pragmatic feature for the developers to know precisely the
status of their code quality and associated actions.

D. Visualization

Visualization is one of the vital strengths of the tool. Apart
from sunburst representation shown in Figure 1, the tool
offers other visualization aids such as smells’ treemap (to
show distribution of smells across the project and to highlight
hotspots) and metrics pie-chart.

E. Console Application

Designite offers a console application to perform code
quality assessments and emit the output in a desired format
(csv, XML, or spreadsheet). The console application could be
used in a continuous integration workflow to enforce code
quality checks. Furthermore, the application is very relevant
for large-scale empirical studies (such as one performed by
Sharma et al. [13]) that involve mining software repositories
to extract code smells.

III. RELATED WORK

The software engineering community has put together a
plethora of smell detection tools using various techniques.
The prominent techniques used to detect smells are metrics-
based, rules (or heuristics)-based, machine learning-based, and
history-based [1]. However, the existing tools mainly focus
on implementation and a few design smells. There has been
some attempts to detect architecture smells. For instance,
Titan tool-set [5] detects modularity violations such as cyclic
dependencies. Similarly, Arcan [4] detects three architecture
smells. Despite these attempts, the available tool support for
architecture smells is very limited and supports only Java
programming language. The proposed tool fills the gap of a
missing architecture smells detection tool for C# code.

IV. CONCLUSIONS

Designite is a software design quality assessment tool for
practitioners and researchers to reveal architecture, design, and
implementation smells. The tool detects well-known architec-
ture smells and presents them using visual aids to make it
easier for developers to comprehend them. The tool offers
supplementary information and features such as Action Hub
to facilitate developers track, manage, and refactor smells and
help them keep technical debt low.

REFERENCES

[1] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158 — 173, 2018.

[2] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[4] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and
E. D. Nitto, “Arcan: A Tool for Architectural Smells Detection,” in 2017
IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, Jun. 2017, pp. 282-285.

[5] L. Xiao, Y. Cai, and R. Kazman, “Titan: a toolset that connects software
architecture with quality analysis,” in FSE 2014: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Drexel University. ACM, Nov. 2014, pp. 763-766.

[6] T. Sharma, “Designite - A Software Design Quality Assessment
Tool,” May 2016, http://www.designite-tools.com. [Online]. Available:
https://doi.org/10.5281/zenodo.2566832

[7] M. Lippert and S. Roock, Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons,
2006.

[8] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni, “An-
tipattern and Code Smell False Positives: Preliminary Conceptualization
and Classification,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 1EEE, 2016.

[9]1 R. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall, 2002.

J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying

Architectural Bad Smells,” in CSMR ’09: Proceedings of the 2009

European Conference on Software Maintenance and Reengineering.

IEEE Computer Society, Mar. 2009, pp. 255-258.

H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural bad smells

in software product lines: An exploratory study,” in Proceedings of the

WICSA 2014 Companion Volume. ACM, 2014.

T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration

code smell?” in Proceedings of the 13th International Workshop on

Mining Software Repositories, ser. MSR’16, 2016, pp. 189-200.

, “House of Cards: Code Smells in Open-Source C# Repositories,”

in 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Nov 2017, pp. 424-429.

[10]

(11]

[12]

[13]




