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Abstract—Researchers apply machine-learning techniques for
code smell detection to counter the subjectivity of many code
smells. Such approaches need a large, manually annotated dataset
for training and benchmarking. Existing literature offers a few
datasets; however, they are small in size and, more importantly,
do not focus on the subjective code snippets. In this paper,
we present DACOS, a manually annotated dataset containing
10, 267 annotations for 5, 192 code snippets. The dataset targets
three kinds of code smells at different granularity–multifaceted
abstraction, complex method, and long parameter list. The dataset
is created in two phases. The first phase helps us identify the
code snippets that are potentially subjective by determining
the thresholds of metrics used to detect a smell. The second
phase collects annotations for potentially subjective snippets. We
also offer an extended dataset DACOSX that includes definitely
benign and definitely smelly snippets by using the thresholds
identified in the first phase. We have developed TAGMAN, a
web application to help annotators view and mark the snippets
one-by-one and record the provided annotations. We make the
datasets and the web application accessible publicly. This dataset
will help researchers working on smell detection techniques to
build relevant and context-aware machine-learning models.

I. INTRODUCTION

Code smells are symptoms of poor design and implemen-
tation [1]. Existing literature shows that code smells have a
negative impact on maintainability [2], [3], development effort
[4], [5], and reliability [6]–[9] among other quality attributes.
Given its importance, the software engineering community has
put significant effort to study various dimensions, such as their
characteristics, impact, causes, and detection mechanisms,
related to code smells [10].

Many code smells are subjective in nature [10] i.e., a snippet
may exhibit a smell in one context, but a similar snippet
may not be considered smelly in another context. Context
includes the used programming language, experience of the
development team, and quality-related practices followed in
an organization. A simple example of smells’ subjectivity is
a method with, for example, 80 lines of code. Based on the
context, it could be a large method for some developers; others
might not classify the method as a large method. However, a
method with 500 lines of code will be definitely a large method
for all developers.

Currently, the majority of commonly used tools use metrics
and heuristics to identify code smells [10]. It is often argued
that due to the subjective nature of smells, one cannot come
up with universally accepted metric thresholds to classify a

snippet in a smelly or benign code in all contexts. [10],
[11] To overcome the challenge introduced by the subjective
nature of smells, researchers propose smell detection using
machine-learning techniques [11]–[16]. Such approaches rely
on a code smells dataset, ideally manually annotated, to train a
machine-learning model. However, existing datasets offer little
on multiple fronts. First, the literature offers only a handful
of datasets such as LANDFILL [17]. Second, existing datasets
contain a small number of annotated samples; for example,
LANDFILL offers annotations for only 243 snippets. A dataset
with a small number of annotated samples would help a little
to train state-of-the-art deep-learning models with reasonable
accuracy. Next, existing code smells datasets do not filter out
code snippets that are definitely benign or smelly. For example,
a snippet with a very few (say, three) lines of code cannot have
a long method; similarly, a snippet with a very large (e.g., 200)
number of lines of code definitely suffers from a long method
smell. Given that the value, in terms of effectiveness, of a smell
dataset lies in the captured subjectivity, such definite snippets,
either definite benign or smelly, reduce the efficacy offered
by a dataset. Lastly, the available support for different types
of smells is limited; for example, LANDFILL offers annotated
snippets for five types of smells. Given the huge amount
of effort involved in annotating code snippets, the software
engineering community needs to complement existing smell
datasets for other kinds of actively researched smells.

In this paper, we offer a manually annotated dataset of
code smells viz. DAtaset of COde Smells (DACOS). To create
an effective dataset, we filtered the code snippets that are
likely to be subjective by removing the snippets that are
either definitely benign or smelly. This approach helps us
better utilize the annotators’ effort by considering their inputs
where we actually need them. The dataset offers annotated
code snippets for three code smells— multifaceted abstraction
[18], [19], complex method [20], and long parameter list [1].
In addition to a manually annotated dataset on potentially
subjective snippets, we offer DACOSX dataset containing a
large number of snippets that are either definitely benign
or smelly. Furthermore, we developed a web-application viz.
TAGMAN to make it easy for annotators to see one snippet at
a time, and indicate whether a smell is present in the snippet.
We have made source code of TAGMAN1 available publicly.

1https://github.com/SMART-Dal/Tagman
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Fig. 1. Dataset construction process

We make the following contributions to the state of the art.
• We offer DACOS, a manually annotated code smell

dataset, containing 10, 267 annotations for 5, 192 code
snippets for the considered code smells.

• We also provide DACOSX, an extended dataset containing
207, 605 snippets that are either definitely benign or
smelly. These datasets will help researchers in the field
to train and validate their machine-learning models.

• A configurable web application TAGMAN for easy smell
annotations. The community may use the application for
similar code annotation purposes.

II. DATASET CONSTRUCTION

Figure 1 provides an overview of the dataset construction
process. We elaborate on the steps in detail below.

A. Downloading repositories

In step 1 from Figure 1, we perform the following tasks
to identify and download repositories.

• We use searchgithubrepo [21] python package,
which in turn uses the GITHUB GRAPHQL API [22] to
filter GITHUB repositories.

• To identify high quality Java repositories, we select
repositories with more than or equal to 13 thousand stars
and more than ten thousand lines of code.

• Also, we discard the repositories that are not modified in
the last one year.

• In addition, we use QScored [23] to filter out repositories
based on their code quality score. QScored assigns a
weighted quality score based on the detected smells at
various granularities. We select repositories that have a
quality score less than ten (the higher the score, the poorer
the quality).

• Finally, we obtained ten repositories after applying the
filtering criteria. We download the selected repositories.

B. Dividing the repositories into classes and methods

We need to split a repository into individual methods and
classes so that TAGMAN can show individual snippets one by

one to an annotator. We use CODESPLITJAVA [24] in step 2
to split each repository into individual methods and classes.

C. Analyzing repositories

In step 3 , we employ a metrics-based filtering process in
the phase-2 of manual annotation. We use DESIGNITEJAVA
[25] to compute code quality metrics. DESIGNITEJAVA com-
putes a variety of code quality metrics and detects smells;
it has been used in various studies [26]–[30]. We elaborate
the process to filter out non-subjective samples in the manual
annotation step.

D. Tagman

TAGMAN, shown as 4 in Figure 1, is a web-based tool
that we created to facilitate the annotation process. Figure 2
shows a screenshot of the application showing a code snippet
and an option to annotate the snippet with a smell. The front-
end of TAGMAN is written in Thymeleaf and HTML/CSS. The
back-end of the application is developed in SpringBootJava
and the data is stored in a MYSQL database. Figure 3 shows
the schema of the database.

At the beginning of the code smell annotation cycle, we
upload a CSV file containing the repository names and URL of
selected GITHUB repositories. TAGMAN back-end uses a set
of Python scripts2 to download GITHUB repositories, split the
code into class and method files, and run DESIGNITEJAVA.

Once the data import is completed, the tool is ready to start
accepting annotations. To start an annotation session, a user
login (or sign up) to the application. Then, the user is presented
with instructions including the definitions of code smells. The
user can then start annotating the presented code snippets.

E. Manual annotation

We employ a snippet selection mechanism to identify po-
tentially subjective snippets w.r.t. a code smell. We do so
to improve the effectiveness of the resultant dataset by only
including manual annotations for potentially subjective code

2https://github.com/SMART-Dal/Tagman-scripts
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Fig. 2. Annotation user interface of TAGMAN

Fig. 3. Schema of the DACOS database

snippets. Also, such a strategy helps us better utilize the
available annotators’ time. A potentially subjective snippet is a
code snippet that may get classified as benign or smelly based
on context. The rest of the snippets that are not identified
as potentially subjective snippets are either definitely benign
or smelly snippet. For example, cyclomatic complexity (CC)
[31] is commonly used to detect complex method smell. A
code snippet is definitely benign if CC is very low (e.g.,
CC=1); similarly, a snippet is definitely smelly if CC is very
high for a method (e.g., CC=30). We divide our annotation
process into two phases. In the first phase, we show all
snippets, i.e., without any filtering, to annotators to identify
metrics thresholds to determine whether a snippet is potentially
subjective or not. The second phase uses the identified metrics
thresholds and show the filtered code snippets to annotators.

1) Phase-1: In the first phase, we show code snippets
without any filtering to annotators. TAGMAN presents one
snippet at a time to the annotators and collects their response
on whether the shown snippet has a code smell or not. We
show a code snippet to two randomly chosen annotators and
record their responses. The annotators recruited, on a volunteer
basis, for this phase were graduate students of Computer

Science enrolled in a software engineering course (during
summer 2022) that cover code smells extensively. A total of
110 annotators participated in this phase.

We compute the minimum and maximum threshold for
metrics that are used to decide the presence of a code smell
based on the collected responses in Phase-1. We received
a total 17, 869 responses in this phase. We compute the
lowest metric value (tl) where the smell is identified, for
each smell individually, to obtain the threshold at the lower
side. Similarly, we extract the highest metric value (th) where
the smell is not identified. Then, we compute the standard
deviation (sd) of the metric value for the samples where the
smell is identified. Finally, we obtain the low threshold using
max(ml, tl - sd) and high threshold using min(mh, th

+ sd) for subjective snippet identification. Here, ml and mh

represent the lowest and highest possible values of a metric.
Table I summarizes the quality metrics corresponding to each
code smell and their thresholds for identifying subjective
snippets. For instance, for cyclomatic complexity metric, we
obtain 4 and 7 from the above calculation after rounding the
values to the nearest integer.

TABLE I
CODE QUALITY METRICS USED FOR CODE SMELLS AND THEIR LOW AND

HIGH THRESHOLDS FOR SUBJECTIVE SNIPPET IDENTIFICATION

Code smell Code quality metric Metric threshold
Complex method Cyclomatic complexity 4–7
Long parameter list Parameter count 3–6
Multifaceted
abstraction

Lack of cohesion among
methods (LCOM)

0.4–0.8

2) Phase-2: We configure our filtering mechanism based on
the thresholds obtained from Phase-1 and invite annotators by
advertising the link of TAGMAN installation on social media
platforms such as Twitter and LinkedIn. The invitation was
open to all software developers, software engineering students,
and researchers who understand Java programming language
and at least basic object-oriented concepts. We kept the
invitation open for six weeks during Dec-Jan 2022-23. A total
of 82 annotators participated in this phase. TAGMAN showed
snippets that have metric values falling between the low and
high thresholds (inclusive). We configured TAGMAN to get two
annotations for each sample to improve the reliability of the
annotations.

F. Dataset information

After the phase-2, we received a total of 10, 267 annotations
for 5, 192 samples from 86 annotators. Table II presents the
number of annotations and samples per smell type.
Dataset availability: The datasets offered in this paper are
available online [32]. Also, the repositories containing scripts2

used to prepare code snippets as well as code annotation
application3 i.e., TAGMAN are available online.

3https://github.com/SMART-Dal/Tagman
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TABLE II
DATASET METADATA

Dataset Code smell #Annotations #Samples
Complex method 4,349 2,197
Long parameter list 3,221 1,634DACOS
Multifaceted abstraction 2,697 1,361

Total 10,267 5,192

Complex method – 94,489
Long parameter list – 93,442DACOSX
Multifaceted abstraction – 19,674

Total – 207,605

III. POTENTIAL RESEARCH APPLICATIONS

• Detecting and validating code smells: Given the sub-
jective nature, traditional smell detection tools that imple-
ment rules and heuristics to identify smells, do poorly.
The success of a machine-learning approach to detect
smells depends on the availability of a large manually
annotated dataset. The presented datasets, DACOS and
DACOSX, complement existing datasets by offering a
large number of subjective code snippets for three code
smells that the existing datasets do not cover.

• Correlating code smells with software engineering
aspects: A variety of exploratory and empirical studies
investigating the impact of code smells exists. It includes
bug prediction [33], maintainability prediction [34], and
maintenance effort [35]. In addition to existing directions,
the tools trained or fine-tuned from the offered datasets
can be used to effectively establish a relationship between
code smells and productivity of a software development
team.

• Extending TAGMAN for code annotation: The code
annotation application that we developed to create this
dataset can be extended for similar kinds of code annota-
tion, for example, to spot vulnerable code and to segregate
well-written identifiers.

IV. RELATED DATASETS

Software engineering literature offers a small number of
manually annotated datasets for code smells. Palomba et
al. [36] offered a dataset LANDFILL containing annotations
for five types of code smells—divergent change, shotgun
surgery, parallel inheritance, blob, and feature envy. They
offered annotations for 243 snippets. They also developed
an online portal where contributors can annotate code for
smells, however as of writing this paper (Jan 2023), the portal
is not accessible. Madeyski et al. [37] proposed MLCQ— a
code smell manually annotated dataset. The dataset contains
14.7 thousand annotations for 4, 770 samples. The dataset
considered four smells—blob, data class, long method, and
feature envy. Both of the datasets mentioned above do not
consider the subjectiveness of a code snippet; hence most of
the snippets might not add any new information for a machine-
learning classifier when used in training. Also, we chose the

code smells that are not covered by any existing code smell
dataset and hence complement the existing datasets. There
are some code smells datasets such as QScored [23]. Though
the QScored dataset is large, the samples are not manually
annotated and hence lack the required capturing of context.

V. THREATS TO VALIDITY

Internal validity threats concern the ability to draw con-
clusions from our experimental results. In phase-2 of man-
ual annotation, we invited volunteers with at least a basic
understanding of Java programming language and object-
orientation concepts. We advertised the invitation on social
media professional channels (Twitter and LinkedIn). Given the
anonymity of the exercise, we do not have any mechanism
to verify the assumption that the participants has sufficient
knowledge to attempt the annotations. However, we offered
all the major participants (with at least 50 annotations) to
include them as contributors to the dataset; we perceive such
a measure would have motivated the annotators to perform
the annotations to the best of their abilities. Additionally, we
configured TAGMAN to obtain two annotations per sample so
that we can reduce the likelihood of a random annotation.

External threats are concerned with the ability to generalize
our results. The proposed dataset is for snippets written in
Java. However, our code annotation tool is generic and it can
be used to annotate snippets from any programming language.
Additionally, scripts used to generate individual snippets can
be customized to use any other external tool for splitting the
code into methods and classes. Furthermore, the thresholds
used in the annotation process to filter snippets based on low
and high thresholds of a metric are configurable.

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We offer DACOS—a manually annotated code smell dataset
containing 10, 267 annotations for 5, 192 subjective code
snippets. We also providea large DACOSX dataset containing
definitely benign and definitely smelly snippets in addition to
those present in DACOS. The paper offers TAGMAN, a code
annotation application, that can be reused in similar contexts.

The proposed dataset covers three code smells. We selected
a rather small set of code smells to consider in the dataset
because it is better to have more number of annotations for
a smell rather than having small number of annotations per
smell. Also, we chose a set of smells that are not covered by
existing code smells dataset. We configured TAGMAN to obtain
two annotations per sample. Though it improves the reliability
of the dataset, one may argue that it may introduce a situation
where the annotations are contradictory to each other. We can
mitigate the limitation by increasing the number of annotations
per sample to three; we will incorporate this mechanism in
the future version of the datasets. Additionally, we would like
to expand the scope of the dataset in terms of programming
language, number of samples, and number of supported smells
in the future.
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“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–1156,
2013.

[36] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells
with public evaluation,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, 2015, pp. 482–485.

[37] L. Madeyski and T. Lewowski, “Mlcq: Industry-relevant code smell
data set,” in Proceedings of the Evaluation and Assessment in Software
Engineering, ser. EASE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 342–347. [Online]. Available:
https://doi.org/10.1145/3383219.3383264

https://www.sciencedirect.com/science/article/pii/S0164121221000339
https://arxiv.org/abs/2110.09610
https://doi.org/10.5281/zenodo.6080422
https://doi.org/10.1145/2901739.2901761
https://github.com/tushartushar/search-repo
https://github.com/tushartushar/search-repo
https://docs.github.com/en/graphql
https://docs.github.com/en/graphql
https://doi.org/10.5281/zenodo.2566865
https://doi.org/10.5281/zenodo.7570428
https://doi.org/10.1145/3383219.3383264

	Introduction
	Dataset construction
	Downloading repositories
	Dividing the repositories into classes and methods
	Analyzing repositories
	Tagman
	Manual annotation
	Phase-1
	Phase-2

	Dataset information

	Potential research applications
	Related datasets
	Threats to validity
	Limitations, conclusions, and future work
	References

