
Detecting and Managing Code Smells:
Research and Practice

Tushar Sharma
Dept. of Management Science and Technology
Athens University of Economics and Business

Athens, Greece
tushar@aueb.gr

ABSTRACT

Code smells indicate the presence of quality problems that
make the software hard to maintain and evolve. A software
development team can keep their software maintainable by
identifying smells and refactor them. In the first part of the
session, we present a comprehensive overview of the litera-
ture concerning smells covering various dimensions of the
metaphor including defining characteristics, classification,
types, as well as causes and impacts of smells. In the second
part, we delve into the details of smell detection methods
prevailed currently both in research prototypes and indus-
trial tools. The final part present actionable and pragmatic
strategies for practitioners to avoid, detect, and eradicate
smells from their codebase.

CCS CONCEPTS

• Software and its engineering → Maintaining soft-
ware; Software maintenance tools;

KEYWORDS

Code smells, Antipatterns, Software quality, Code Quality,
Smell detection tools, Software maintenance, Technical debt

ACM Reference Format:
Tushar Sharma. 2018. Detecting and Managing Code Smells:
Research and Practice. In ICSE ’18 Companion: 40th Interna-

tional Conference on Software Engineering , May 27-June 3,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3183440.3183460

1 DESCRIPTION

Code smells [3, 20, 22] in a software system indicate the
presence of quality problems that make the software hard to
maintain and evolve. Smells not only impact maintainability
[1, 11, 23], but also negatively affect other quality attributes
such as reliability [2, 5, 6] and testability [14]. Given the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00
https://doi.org/10.1145/3183440.3183460

importance of smells and their potential impact on software
quality, software engineering researchers have explored smells
and various dimensions associated with them in the great
width and depth in the last two decades. Identifying code
smells automatically and refactoring them help software en-
gineering practitioners to keep the software maintainable [3].
Therefore, the dimension of automatically identifying smells
has enjoyed active interest by the research community and
appreciated by the practitioners.

We divide our session into three parts. In the first part
of the session, we present a comprehensive overview of the
literature by covering various dimensions of the metaphor.
We present defining characteristics of smells synthesized from
a comprehensive set of definitions [19] discussed in the lit-
erature. These defining characteristics are indicator, poor
solution, violates best practices, impacts quality, and recur-
rence. The smell metaphor has been extended to other simi-
lar domains such as configuration management [17], spread-
sheets [4], and presentations [15]. We present a summary of
the types of smells described in the literature in the form
of a taxonomy1. Smell could cause from a wide variety of
factors including lack of skill or awareness and frequently
changing requirements; we discuss the curated set of ten such
factors that cause smells. Further, we summarize the impact
of smells on people, artifact, or on process.

In the second part, we delve into the details of smell detec-
tion methods prevailed currently both in research prototypes
and industrial tools. Traditionally, smells are detected by
metrics-based [9] and rule-based approaches [10]. History-
based [13] and optimization-based [12] approaches are al-
ternatives that also have been employed by the community.
In the recent times, machine-learning-based approaches [7]
have been attempted to detect smells. We aim to present a
synthesized overview of the current approaches. We touch
upon the deficiencies in the current smell detection tools and
techniques. These deficiencies include false-positives and lack
of context, limited detection support for known smells, and
inconsistent smell definitions and detection methods [20].

Additionally, we present the intricacies of developing a
smell detection tool that we learned from developing Desig-
nite2 [18], Puppeteer3 [17], and DbDeo4 [16]. Designite is
software design quality assessment tool that detects smells
at implementation, design, and architecture granularity. The

1http://www.tusharma.in/smells/
2http://www.designite-tools.com
3https://github.com/tushartushar/puppeteer
4https://github.com/tushartushar/DbDeo

https://doi.org/10.1145/3183440.3183460
https://doi.org/10.1145/3183440.3183460
http://www.tusharma.in/smells/
http://www.designite-tools.com
https://github.com/tushartushar/puppeteer
https://github.com/tushartushar/DbDeo

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden T. Sharma

tool also computes various object-oriented design metrics,
detects code clones, prepares dsm (Dependency Structure
Matrix), shows distribution of smells in the form of treemap,
and performs trend analysis to help a software developer
identify issues contributing to technical debt [8] and improve
maintainability of the software. The tool offers free academic
licenses for all academic purposes. Currently, the tool is serv-
ing a large number of practitioners and academics worldwide.

Keeping the software maintainable is a non-trivial challenge
for software development teams given the real-life challenges
(such as time pressure) [21]. The final part of the session deals
with such challenges and present actionable and pragmatic
strategies and practices for practitioners to avoid, detect, and
eradicate smells from their codebase. These strategies focus
on three major pillars of software development — people,
process, and tools.

The session offers contributions to both research and prac-
tice. For researchers, it provides a comprehensive overview of
the domain of code smells. Also, it reveals the intricacies of
developing a smell detection tool. At the same time, practi-
tioners can learn the potential quality issues that may arise
in their codebase to avoid them. Furthermore, practitioners
can apply pragmatic strategies planned in this session to
identify, interpret, and refactor smells.

2 SPEAKER BIOGRAPHY

Tushar Sharma is a researcher at Athens University of Eco-
nomics and Business, Athens, Greece. He has more than
ten years of industrial work experience including seven years
at Siemens Research and Technology Center, Bangalore, In-
dia. He earned an MS degree in Computer Science from the
Indian Institute of Technology-Madras, Chennai, India. He co-
authored the book “Refactoring for Software Design Smells:
Managing Technical Debt” published by Morgan Kaufmann
in 2014. He has also co-authored two Oracle Java certification
books. He has delivered talks in many academic as well as
developer conferences. He is an IEEE Senior Member.

ACKNOWLEDGMENTS

This work is funded by the seneca project, which is part of
the Marie Sk lodowska-Curie Innovative Training Networks
(itn-eid) under grant agreement number 642954.

REFERENCES
[1] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,

and David Binkley. 2012. An empirical analysis of the distribution
of unit test smells and their impact on software maintenance.
In IEEE International Conference on Software Maintenance,
ICSM. Universita di Salerno, Salerno, Italy, IEEE, 56–65.

[2] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. 2014. Are test smells really harmful? An
empirical study. Empirical Software Engineering 20, 4 (May
2014), 1052–1094.

[3] Martin Fowler. 1999. Refactoring: Improving the Design of
Existing Programs (1 ed.). Addison-Wesley Professional.

[4] F. Hermans, M. Pinzger, and A. van Deursen. 2012. Detecting
code smells in spreadsheet formulas. In 28th IEEE International
Conference on Software Maintenance (ICSM). 409–418. https:
//doi.org/10.1109/ICSM.2012.6405300

[5] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse
Khomh. 2013. Mining the relationship between anti-patterns de-
pendencies and fault-proneness. In Proceedings - Working Con-
ference on Reverse Engineering, WCRE. Ecole Polytechnique

de Montreal, Montreal, Canada, IEEE, 351–360.
[6] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc,

and Giuliano Antoniol. 2012. An exploratory study of the impact
of antipatterns on class change- and fault-proneness. Empirical
Software Engineering 17, 3 (June 2012), 243–275.

[7] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and
Houari Sahraoui. 2009. A Bayesian Approach for the Detection
of Code and Design Smells. In QSIC ’09: Proceedings of the
2009 Ninth International Conference on Quality Software. IEEE
Computer Society, 305–314.

[8] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Tech-
nical Debt: From Metaphor to Theory and Practice. IEEE Soft-
ware 29, 6 (2012), 18–21.

[9] R Marinescu. 2005. Measurement and quality in object-oriented
design. In 21st IEEE International Conference on Software
Maintenance (ICSM’05). Universitatea Politehnica din Timisoara,
Timisoara, Romania, IEEE, 701–704.

[10] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and
Anne-Françoise Le Meur. 2010. DECOR: A Method for the Speci-
fication and Detection of Code and Design Smells. IEEE Trans.
Software Eng. 36, 1 (2010), 20–36. https://doi.org/10.1109/TSE.
2009.50

[11] Leon Moonen and Aiko Yamashita. 2012. Do code smells reflect
important maintainability aspects?. In ICSM ’12: Proceedings
of the 2012 IEEE International Conference on Software Main-
tenance (ICSM). Simula Research Laboratory, IEEE Computer
Society.

[12] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, and Kat-
suro Inoue. 2015. Web Service Antipatterns Detection Using
Genetic Programming. In GECCO ’15: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation.
Osaka University, ACM, 1351–1358.

[13] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Denys Poshyvanyk, and Andrea De Lucia. 2015. Mining
version histories for detecting code smells. IEEE Transactions
on Software Engineering 41, 5 (May 2015), 462–489.

[14] Aminata Sabané, Massimiliano Di Penta, Giuliano Antoniol, and
Yann-Gaël Guéhéneuc. 2013. A Study on the Relation between
Antipatterns and the Cost of Class Unit Testing. In CSMR ’13:
Proceedings of the 2013 17th European Conference on Software
Maintenance and Reengineering. IEEE Computer Society, 167–
176.

[15] Tushar Sharma. 2016. Presentation smells: How not to prepare
your conference presentation. http://xrds.acm.org/blog/2016/06/
presentation-smells-to-avoid-in-conference-presentation/. (2016).
[Online; accessed 12-Oct-2017].

[16] Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel
Bruntink, and Diomidis Spinellis. 2018. Smelly Relations: Mea-
suring and Understanding Database Schema Quality. In Proceed-
ings of 40th International Conference on Software Engineering
(ICSE ’18). https://doi.org/10.1145/3183519.3183529

[17] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016.
Does Your Configuration Code Smell?. In Proceedings of the
13th International Workshop on Mining Software Repositories
(MSR’16). 189–200. https://doi.org/10.1145/2901739.2901761

[18] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. De-
signite — A Software Design Quality Assessment Tool. In Pro-
ceedings of the First International Workshop on Bringing Ar-
chitecture Design Thinking into Developers’ Daily Activities
(BRIDGE ’16). ACM. https://doi.org/10.1145/2896935.2896938

[19] Tushar Sharma and Diomidis Spinellis. 2017. Definitions of a
Software Smell. (Nov. 2017). https://doi.org/10.5281/zenodo.
1066135

[20] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software
smells. Journal of Systems and Software 138 (2018), 158 – 173.
https://doi.org/10.1016/j.jss.2017.12.034

[21] Tushar Sharma, Girish Suryanarayana, and Ganesh Samarthyam.
2015. Challenges to and Solutions for Refactoring Adoption: An
Industrial Perspective. IEEE Software 32, 6 (Oct. 2015), 44–51.

[22] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma.
2014. Refactoring for Software Design Smells: Managing Tech-
nical Debt (1 ed.). Morgan Kaufmann.

[23] Aiko Yamashita. 2014. Assessing the capability of code smells
to explain maintenance problems: an empirical study combining
quantitative and qualitative data. Empirical Software Engineer-
ing 19, 4 (2014), 1111–1143.

https://doi.org/10.1109/ICSM.2012.6405300
https://doi.org/10.1109/ICSM.2012.6405300
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
http://xrds.acm.org/blog/2016/06/presentation-smells-to-avoid-in-conference-presentation/
http://xrds.acm.org/blog/2016/06/presentation-smells-to-avoid-in-conference-presentation/
https://doi.org/10.1145/3183519.3183529
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2896935.2896938
https://doi.org/10.5281/zenodo.1066135
https://doi.org/10.5281/zenodo.1066135
https://doi.org/10.1016/j.jss.2017.12.034

