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ABSTRACT

Code smells indicate the presence of quality problems that
make the software hard to maintain and evolve. A software
development team can keep their software maintainable by
identifying smells and refactor them. In the first part of the
session, we present a comprehensive overview of the litera-
ture concerning smells covering various dimensions of the
metaphor including defining characteristics, classification,
types, as well as causes and impacts of smells. In the second
part, we delve into the details of smell detection methods
prevailed currently both in research prototypes and indus-
trial tools. The final part present actionable and pragmatic
strategies for practitioners to avoid, detect, and eradicate
smells from their codebase.
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1 DESCRIPTION

Code smells [3, 20, 22] in a software system indicate the
presence of quality problems that make the software hard to
maintain and evolve. Smells not only impact maintainability
[1, 11, 23], but also negatively affect other quality attributes
such as reliability [2, 5, 6] and testability [14]. Given the
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importance of smells and their potential impact on software
quality, software engineering researchers have explored smells
and various dimensions associated with them in the great
width and depth in the last two decades. Identifying code
smells automatically and refactoring them help software en-
gineering practitioners to keep the software maintainable [3].
Therefore, the dimension of automatically identifying smells
has enjoyed active interest by the research community and
appreciated by the practitioners.

We divide our session into three parts. In the first part
of the session, we present a comprehensive overview of the
literature by covering various dimensions of the metaphor.
We present defining characteristics of smells synthesized from
a comprehensive set of definitions [19] discussed in the lit-
erature. These defining characteristics are indicator, poor
solution, violates best practices, impacts quality, and recur-
rence. The smell metaphor has been extended to other simi-
lar domains such as configuration management [17], spread-
sheets [4], and presentations [15]. We present a summary of
the types of smells described in the literature in the form
of a taxonomy1. Smell could cause from a wide variety of
factors including lack of skill or awareness and frequently
changing requirements; we discuss the curated set of ten such
factors that cause smells. Further, we summarize the impact
of smells on people, artifact, or on process.

In the second part, we delve into the details of smell detec-
tion methods prevailed currently both in research prototypes
and industrial tools. Traditionally, smells are detected by
metrics-based [9] and rule-based approaches [10]. History-
based [13] and optimization-based [12] approaches are al-
ternatives that also have been employed by the community.
In the recent times, machine-learning-based approaches [7]
have been attempted to detect smells. We aim to present a
synthesized overview of the current approaches. We touch
upon the deficiencies in the current smell detection tools and
techniques. These deficiencies include false-positives and lack
of context, limited detection support for known smells, and
inconsistent smell definitions and detection methods [20].

Additionally, we present the intricacies of developing a
smell detection tool that we learned from developing Desig-
nite2 [18], Puppeteer3 [17], and DbDeo4 [16]. Designite is
software design quality assessment tool that detects smells
at implementation, design, and architecture granularity. The

1http://www.tusharma.in/smells/
2http://www.designite-tools.com
3https://github.com/tushartushar/puppeteer
4https://github.com/tushartushar/DbDeo
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tool also computes various object-oriented design metrics,
detects code clones, prepares dsm (Dependency Structure
Matrix), shows distribution of smells in the form of treemap,
and performs trend analysis to help a software developer
identify issues contributing to technical debt [8] and improve
maintainability of the software. The tool offers free academic
licenses for all academic purposes. Currently, the tool is serv-
ing a large number of practitioners and academics worldwide.

Keeping the software maintainable is a non-trivial challenge
for software development teams given the real-life challenges
(such as time pressure) [21]. The final part of the session deals
with such challenges and present actionable and pragmatic
strategies and practices for practitioners to avoid, detect, and
eradicate smells from their codebase. These strategies focus
on three major pillars of software development — people,
process, and tools.

The session offers contributions to both research and prac-
tice. For researchers, it provides a comprehensive overview of
the domain of code smells. Also, it reveals the intricacies of
developing a smell detection tool. At the same time, practi-
tioners can learn the potential quality issues that may arise
in their codebase to avoid them. Furthermore, practitioners
can apply pragmatic strategies planned in this session to
identify, interpret, and refactor smells.
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