
Augur: Incorporating Hidden Dependencies and
Variable Granularity in Change Impact Analysis

Tushar Sharma
Dept. of Management Science and Technology
Athens University of Economics and Business

Athens, Greece.
tushar@aueb.gr

Girish Suryanarayana
Corporate Research & Technologies Center
Siemens Technology and Services Pvt. Ltd

Bangalore, India.
girish.suryanarayana@siemens.com

Abstract—Software change impact analysis (CIA) methods en-
able developers to understand potential impacts of a code change
so that the change can be executed confidently without affecting
reliability of the software. However, existing CIA approaches do
not support CIA for all source code granularities. Additionally,
they lack support for inter-granular change impact queries and
hidden dependencies. This paper introduces Augur, an automated
static code analysis-based CIA approach that addresses these
shortcomings. Augur infers and maintains semantic and envi-
ronment dependencies along with data and control dependencies
between source code entities across granularities. Additionally,
Augur uses Change Impact Query Language, a novel query
language for impact analysis proposed in this paper, to support
inter-granular CIA queries with batch querying feature. Augur
has been realized as a Visual Studio extension called Augur-Tool.
We have conducted quantitative evaluation on two open-source
and two industrial projects to assess the accuracy of the tool.
Results from the evaluation indicate that Augur provides CIA
with high accuracy (average precision 55% and average recall
85%).

Keywords—Change Impact Analysis, Change Impact Query
Language, Semantic dependency, Environment dependency.

I. INTRODUCTION

The software maintenance phase is the longest phase of
the software development lifecycle that spans 40-80% of total
project effort and cost [1]. Developers carry out adaptive,
corrective, perfective, and preventive activities during the
maintenance phase to constantly improve the software and
deliver value to their stakeholders. Each of these activities
introduces a set of changes in the software system. In order to
make a change confidently without affecting the reliability of
the software (i.e. making a change without introducing new
bugs), a developer has to be aware of potential impacts of
the proposed change. A recent survey has identified unknown
impacts as the biggest technical deterrent for carrying out
refactoring [2].

Therefore, the topic “Change Impact Analysis” (CIA) is
receiving increasing attention from the software engineering
community. CIA is defined as “The determination of potential
effects to a subject system resulting from a proposed software
change” [3] and aims to minimize the unknown and unex-
pected side effects of a change.

Foreseeing the impacts of a proposed change is difficult; the
amplitude of the difficulty increases as the software system be-

comes larger and complex. Even in the case of an experienced
developer who has spent considerable time with the software,
it is not guaranteed to cover all potential impacts of a change
just by following his understanding about the software.

Researchers have, therefore, focused on automated methods
for CIA. One set of automated CIA methods uses historical in-
formation from version repositories to mine co-change depen-
dencies (i.e., eliciting the source code entities that are changing
together) and analyze the impact of a future change based
on the co-change history [4]–[12]. However, a CIA method
based on mining history depends on the past operations and
existing dependencies. Therefore, it might lead to incorrect
or incomplete results especially when new artifacts or new
dependencies are introduced in the software. Further, most
of the methods belonging to this category treat a repository
check-in as a transaction and hence assume that all the changed
source code entities since last check-in belong to a single
related change which is often not the case. Such transactions
introduce noise in the CIA and lead to incorrect results.

Many other CIA automated methods use static code analysis
to determine the impact of a proposed change [13]–[19].
However, they have the following shortcomings: First, most
of these methods work on a single granularity of the source
code (either class or method-level) and do not support CIA
for all source code granularities (i.e., local variable, field,
statement, method, class, and namespace). Developers prefer
impact results at multiple granularities to better understand
the impact of a change. Thus, a single granularity for CIA is
not sufficient and leads to imprecise results. On the contrary,
allowing developers to choose variable granularity improves
precision and provides more useable and actionable change
impact information [19].

Second, these methods do not support inter-granular queries
for CIA. An inter-granular query specifies the proposed change
at one source code granularity and provides the result of the
query at another source code granularity. For example, the
query “Show the methods that possibly need to be updated
(across classes) when I make a change in this class” is an inter-
granular query. In contrast, most of the existing approaches
would have only informed what other classes would be im-
pacted by the proposed change. Support for inter-granular
queries in a CIA tool can precisely pinpoint the impact of

a change leading to a more effective CIA.
Third, existing static analysis-based CIA methods only use

data and/or control dependencies to identify the impacted
source code entities. It has been shown that recall of such
methods is low due to the presence of hidden dependen-
cies [20]. While there has been some initial work towards
identifying these hidden dependencies [20], such dependencies
have not been properly explored and are not supported by
existing CIA methods.

Fourth, activities such as refactoring impact multiple source
code entities within a single refactoring step. However, exist-
ing CIA approaches require the developer to manually invoke
change impact analysis for each of the changed source code
entity. This is a cumbersome task since the developer has to
himself keep track of the change impact with respect to each
of the code change steps and then aggregate it to reason about
whether he should proceed with the refactoring. It would be
helpful for developers to have a tool that allows them to club
all the steps within a refactoring and invoke a “batch” CIA on
those steps to receive an overall summary of the proposed
changes. However, our survey of existing CIA approaches
shows a lack of support for this feature.

To address these shortcomings, we propose Augur, a static
code analysis-based CIA approach and realize it as a Visual
Studio extension which supports

• change impact analysis at all source code granularities
• inter-granular CIA queries
• semantic and environment dependencies along with data

and control dependencies
• batch CIA using a novel Change Impact Query Language

(CIQL).

II. AUGUR

This section describes how Augur addresses the shortcom-
ings of existing CIA methods described in the previous section.

A. Dependencies supported by Augur

Traditionally, data and control dependencies have been
employed in CIA; however, there are hidden dependencies such
as semantic and environment dependencies identifying which
helps improve the accuracy of CIA. We discuss below the vari-
ous dependencies that are supported by Augur. In the following
discussion, A and B refer to source code entities which could
either be local-variables, fields, statements, methods, classes,
or namespaces.

1) Data dependency: If A uses B in its direct computation,
then A is directly dependent on B. Data dependencies are tran-
sitive, thus if A uses B indirectly via intermediate dependent
entities, then A is indirectly dependent on B.

2) Control dependency: If B is a part of a controlling or
conditional expression of a control structure (such as an if
statement) and A is a part of a statement within the control
structure (such as then block of an if block) such that a
change in the value of B decides the execution of A, then
A is dependent on B (through control dependency).

3) Semantic dependency: Semantic dependency refers to
dependencies among source code entities that arise due to
the semantic relationships between programming language
constructs. Currently, Augur supports the following types of
semantic dependencies:

• When A and B are constructors of classes X and Y
respectively (where Y is a sub-class of X) such that a
change in A may impact the object creation of class Y
through B, then B is semantically dependent on A.

• When A and B are overloaded methods in a class, a
change in method signature of one of the methods may
change the method invocation order involving A and B,
then A and B are semantically dependent on each other.

4) Environment dependency: If A and B interact with each
other via the environment such as using database, registry, or
file, they share an environment dependency between them.

B. Unified Dependency Graph

The Unified Dependency Graph (UDG) is a novel construct
that we have developed for Augur to conveniently and ef-
fectively capture and represent source code entities and their
relationships. UDG is a conceptual extension of DSD (Data
and Structure Dependency) graph [21]; it infers and maintains
the dependencies supported by Augur for all source code
granularities. UDG also maintains information about additional
relationships such as inheritance and method calls between
source code entities. UDG is modelled as a hierarchical graph
where each plane of nodes (i.e. vertices) represents a source
code granularity. UDG provides a set of APIs to access the
contained information.

Figure 1 shows a UDG where a software system is repre-
sented by a node that has references to its children nodes that
represent namespaces in the software system. Each namespace
node contains a reference to a graph representing classes
in that namespace. Each class node contains references to
two graphs — a method and a field graph. Each method
node contains references to two graphs — one represents all
the statements and the other contains nodes representing all
the local variables in the method. Similarly, each node also
maintains the reference to its parent node.

Additionally, if a node has one or more dependencies on
another node at the same level, it maintains a reference to it.
Finally, the graph also maintains inheritance and method-call
relationships. Class nodes keep references of other nodes that
represent its sub or super class. Similarly, method nodes keep
references of other nodes that represent methods called from it.
Nodes representing fields, statements, and local-variables may
keep references of other nodes in the same graph or in other
sibling graphs on which they have one or more dependencies.

The dependencies among the source code entities are pop-
ulated, computed, and maintained in a bottom-up fashion.
Thus, if a dependency between two source code entities at a
higher-level granularity is arising due to a dependency between
entities at a lower-level granularity, then the UDG maintains
the dependency only once between the nodes representing
the original source of dependency. This avoids the risk of

inconsistent dependency edges in the graph due to duplication
of dependencies. It is possible that two nodes share multiple
edges due to multiple relationships or dependencies.

Software
System

VSS

Namespaces
(VN) Classes (VC)

Methods (VM)

Local
Variables
(VL)

Fields
(VF)

Statements (VS)

Children
(Ec)

Data
dependency

(Ed)

Structure
dependency

(Es)

Method-
call (Ecall)

Super class
(Esup)

Fig. 1. Unified Dependency Graph

1) Supporting Inter-granular Queries: An inter-granular
query specifies a proposed change at one granularity level and
expects the corresponding potential impact set at a different
granularity level. UDG plays a vital role in helping Augur
support inter-granular queries. As described earlier, UDG is
a hierarchical graph where each plane of nodes represents
source code entities at different granularities. The hierarchical
structure of the graph enables Augur to conveniently infer
and maintain references to dependent source code entities for
different granularities.

C. CIQL (Change Impact Query Language)

To support batch execution of multiple Change Impact
Queries (CIQs) in a scalable and convenient way, we developed
a new query language namely Change Impact Query Language
(CIQL). The language helps a user to easily formulate CIQs by
using a rich set of CIA options. The CIQL specifies a grammar
and defines the syntax for queries. It supports the specification
of a CIQ along the following dimensions:

Granularity (Source): Granularity of the source code entity
intended to be changed. It can be one of the following: Local
variable, Statement, Field, Method, Class, and Namespace.

Entity: Specific source code entity intended to be changed.
Analysis depth (optional): The depth of analysis expected

from Augur. It can be assigned one of two values: Direct
(default value) or All. A Direct depth specifies that the user is
interested only in the direct potential impacts of the intended
change, whereas an All depth states that the user is expecting
to carry out direct as well as indirect impact analysis.

Scope (optional): The scope within the software system
where the potential impacts will be looked for. A scope
could be one of the following: ContainingClass (where the
specific entity is residing), Classes <classes> (a set of classes

specified by <classes>), ContainingNamespace (where the
specific entity is residing), Namespaces <namespaces> (a set
of namespaces specified by <namespaces>), or SoftwareSys-
tem (the whole software system; this is the default option).

Granularity (Impact): Granularity of the potential impact
set. It can be one of the following: Local variable, Statement,
Field, Method, Class, and Namespace.

1) Syntax of queries: The CIQL enforces the following
syntax for CIQs:

CIQL::get “<Granularity (Impact)>” [within
“<Scope>”] [with “<Depth>”] where “<Entity>” is
“<Granularity (Source)>”.

Each CIQ starts with “CIQL::get” to explicitly state the
protocol of the query, i.e. CIQL and the operation i.e. get. Any
entry in angle brackets specifies the placeholder for the entry;
for instance, <Entity> specifies the specific source code entity
for which the change is intended. For instance, to specify a
method, one has to specify the namespace, class of the method,
and the method name separated by semi-colons. In case, the
granularity specified is a Statement, then the statement number
within the containing method needs to be provided. Optional
entries are shown in square brackets.

D. Augur-Tool

We have realized Augur as a Microsoft Visual Studio
Package [22] (called Augur-Tool). A Visual Studio Package
is an extension that seamlessly integrates itself into the IDE
and helps highlight the produced output (in this case, inferred
potential impacts) in the IDE itself. The Augur-Tool supports
.NET version 4.5 and can be installed on Visual Studio 2012,
2013, and 2015 editions. The tool along with instructions to
install and use can be found here: http://bit.ly/Augur. Augur-
Tool follows the architecture showed in Figure 2. The follow-
ing sub-sections describe the components in the architecture.

Fig. 2. Architecture of the proposed method

1) Query Processor: A user provides a CIQ as input to
Augur via the UI as shown in Figure 3. The Query Processor
is responsible for receiving the query, interpreting its various
dimensions, and evaluating it using the source model provided
by the UDG. Upon completion of the query evaluation, the
results of the query i.e. potential impact sets are either relayed
to the UI or logged to a file in case of batch queries. The UI

allows the user to click on any of the produced impacts and
shows the corresponding source code entity in the IDE for
easier navigation. Augur provides a separate UI to specify a
CIQ using CIQL. This interface allows the user to specify either
a query directly or a CIQL batch file containing multiple CIQL
queries. The CIQL batch file offers a scalable way to compute
change impact for a large number of proposed changes without
manual interference.

Fig. 3. QueryView in Augur-Tool to specify a CIQ

2) UDG Source Model: The responsibility of the UDG
Source Model is to use the CIA Framework to infer rela-
tionships and dependencies among the source code entities
and populate an instance of UDG (see Section II-B) with
the inferred information. This information is used to evaluate
queries sent by the Query Processor.

The UDG Source Model creates the UDG graph instance
(i.e. it creates graphs at each granularity) at application start-
up. Once an graph instance is created, the UDG Source Model
applies a set of rules encapsulated in the Rule Base module.
The rules are applied on the source code information in the CIA
Framework to infer relationships and dependencies between
nodes. The graph is then populated with this information.

3) Rule Base: The Rule Base module not only realizes
rules to detect data and control dependencies among pro-
gram entities via generic traditional implementation, but also
implements a predefined set of rules to infer semantic and
environment dependencies. Currently, Augur supports rules for
semantic dependency arising from constructor dependency in
a class hierarchy and overloaded methods. Similarly, environ-
ment dependency arising from shared access of file, database,
or registry is supported.

It is important to note that these rules are specific in nature
and typically cover one facet per rule. For example, where
two source code entities share a dependency because of their
interaction with a same registry key, our rule base provides a
rule that checks for instances of the same registry key across
the software system and infers environment dependency.

4) CIA Framework: The CIA Framework abstracts the low-
level Abstract Syntax Tree (AST) library provided by the
underlying Code Parser and provides a higher-level conve-
nience API to the UDG Source Model. Thus, it separates
the application specific logic from the source code parsing
logic. Having such an explicit layer of abstraction allows the

underlying parsing library to be replaced in the future (for
instance, to support another programming language) without
impacting the UDG Source Model layer.

5) Code Parser: The Code Parser component is responsible
for parsing the source code and generating an AST to be used
by the CIA Framework. For the Augur-Tool, we have used
NRefactory (an open-source library) [23] as the Code Parser.
NRefactory also provides a set of APIs to access the source
code information programmatically via the generated AST.

III. QUANTITATIVE EVALUATION

The goal of the quantitative evaluation was to assess whether
and to what extent Augur improves the accuracy of CIA.
Towards this, we picked two open-source projects and two
proprietary industrial projects as the subject systems for the
quantitative evaluation. The open-source projects are GitEx-
tensions [24] and VsVim [25]. The industrial projects (referred
as P1 and P2 in this paper) belong to Siemens CT DC AA
(Corporate Development Center Asia Australia). All of the
projects are implemented largely in C#. Characteristics of the
subject systems are listed in Table I.

TABLE I
CHARACTERISTICS OF QUANTITATIVE CASE-STUDY SYSTEMS

Software system LOC #Types
GitExtensions(version 2.48) 89K 499
VsVim(version 1.8.0.0) 88K 398
P1 58K 479
P2 72K 509

1) Evaluation process: To evaluate the accuracy of the
Augur-Tool, we employed two widely accepted metrics
namely precision and recall. For a given intended change, if
M is the correct impact set and A is the estimated impact
set, then the precision P is the fraction of correctly estimated
impact set over the estimated impact set, and the recall R is
the fraction of correctly estimated impact set over the correct
impact set.

P =
|M

⋂
A|

|A|
× 100% (1)

R =
|M

⋂
A|

|M |
× 100% (2)

We carried out the evaluation for three granularities i.e.
Statement (S), Method (M), and Type (T). For each permuta-
tion, we randomly chose 10 instances of source code entities
across types, namespaces, and sub-projects. Thus, we carried
out impact analysis for 90 different queries per subject system.

To create a set of benchmark results for comparison, we
provided the source code of all four projects to three C#
developers and asked them to analyze each subject system
carefully for all the 90 queries. All the developers belong
to Siemens CT DC AA and had on the average 6.3 years
of programming experience. None of the chosen developers
belong to projects P1 or P2. We illustrated the usage of
Augur-Tool to all of them without providing details about how

TABLE II
RESULTS OF THE QUANTITATIVE EVALUATION: Gc REPRESENTS THE GRANULARITY (CHANGE) AND Ge REPRESENTS THE GRANULARITIES (EXPECTED).
Pavg [S], Pavg [M], AND Pavg [T] SHOW THE AVERAGE PRECISION FOR THE GRANULARITY Ge AND S, M, AND T RESPECTIVELY. SIMILARLY, Ravg [S],

Ravg [M], AND Ravg [T] SHOW THE AVERAGE RECALL FOR THE GRANULARITY Ge AND S, M, AND T RESPECTIVELY. VALUES IN SQUARE BRACKETS
SHOW THE RESULTS OBTAINED FROM THE SIMPLE CIA METHOD.

Gc Ge Pavg[S] Pavg[M] Pavg[T] Ravg[S] Ravg[M] Ravg[T]

GitEx
S S, M, T 0.50[0.50] 0.65[NA] 0.54[NA] 0.83[0.83] 0.83[NA] 0.75[NA]
M S, M, T 0.68 [NA] 0.58[0.55] 0.58 [NA] 0.85 [NA] 0.83[0.72] 0.89 [NA]
T S, M, T 0.63 [NA] 0.64 [NA] 0.63[0.61] 0.81 [NA] 0.81 [NA] 0.92[0.83]

VsVim
S S, M, T 0.69[0.69] 0.44 [NA] 0.52 [NA] 0.72[0.72] 0.92 [NA] 0.79 [NA]
M S, M, T 0.56 [NA] 0.39[0.36] 0.58 [NA] 0.81 [NA] 0.83[0.72] 0.77 [NA]
T S, M, T 0.53 [NA] 0.53 [NA] 0.53[0.50] 0.76 [NA] 0.92 [NA] 0.78[0.67]

P1
S S, M, T 0.50[0.50] 0.49 [NA] 0.58 [NA] 0.83[0.83] 0.73 [NA] 0.88 [NA]
M S, M, T 0.58 [NA] 0.59[0.50] 0.47 [NA] 1 [NA] 0.90[0.63] 0.75 [NA]
T S, M, T 0.58 [NA] 0.67 [NA] 0.55[0.55] 1 [NA] 1 [NA] 0.71[0.56]

P2
S S, M, T 0.50[0.50] 0.55 [NA] 0.45 [NA] 1 [1] 1 [NA] 0.73 [NA]
M S, M, T 0.81 [NA] 0.55[0.50] 0.47 [NA] 0.92 [NA] 1 [0.83] 0.88 [NA]
T S, M, T 0.50 [NA] 0.45 [NA] 0.5 [0.42] 0.83 [NA] 0.83 [NA] 1 [0.75]

it internally works. They carried out a manual analysis and
documented the potential impacted entities for all the queries
for all subject systems independently. Next, we used Augur-
Tool to analyze the change impact across granularities for each
and every statement, method, and type for each project.

2) Evaluation Results: Table II shows the results of the
quantitative evaluation. Gc represents the granularity of the
source code entity that was intended to be changed and Ge

represents the granularities of the expected potential source
code entities. Each row summarizes the results of 30 different
cases for 3 permutations. Pavg[S], Pavg[M], and Pavg[T] show
the average precision for the granularity Ge and S, M, and T
respectively. Similarly, Ravg[S], Ravg[M], and Ravg[T] show
the average recall for the granularity Ge and S, M, and
T respectively. To showcase the improvement in CIA that
Augur brings, we compare it with a simple CIA method that
supports only data and control dependencies and does not
support variable granularities. Table II presents a comparison
of accuracy between both the methods where square brackets
show the results obtained from the simple CIA method.

Table II shows 55.5% and 81% average and maximum
precision respectively exhibited by Augur for the randomly-
generated test query sets. Further, the precision shown by Au-
gur was considerably high compared to the simple CIA method
in all four subject systems with a maximum improvement in
precision of 18% with the associated recall improvement being
43% and an average improvement in precision of 6.1%. This
indicates that Augur produced substantially more relevant than
irrelevant results compared to the simple CIA approach.

Further, Augur reports 85.5% and 100% average and maxi-
mum recall respectively across all granularities. Augur shows
considerably high recall compared to the simple CIA approach
with a maximum improvement being 43% and an average
improvement of 13.8%. In other words, Augur was better at
returning most of the relevant results.

Although the Augur-Tool was able to produce the correct
impact set most of the time, there were a few instances where
the tool could not point out all the relevant impacted entities.
We present such instances below:

• Augur includes a set of rules to detect environment
dependency. However, due to the limitations of static
analysis, some instances of such dependencies could not
be inferred statically. For instance, one of the environment
dependency rules detects a hidden dependency between
two source code entities if one entity is reading from a
file and another entity is writing to a file. However, if file
names are not retrievable statically (for instance, when
user is specifying the file names at run time) then the
rule cannot detect the dependency between the entities.

• The current implementation of Augur provides rules for
most common instances of environment dependency. We
observed a few instances where an environment depen-
dency (for instance, configuration dependency) could not
be identified using the present rule-set.

• The current implementation of Augur-Tool does not ac-
count for a dependency when a type is used as a generic
type parameter to a generic class.

• The tool is currently unable to report references of a
source code entity that are coming from an XAML file
in a C# project.

In the future, we plan to extend the current implementation of
the Augur-Tool to address the limitations mentioned above.

IV. RELATED WORK

In this section, we present related work and compare Augur
and Augur-Tool with existing CIA approaches and tools.

A. CIA through mining repositories and information retrieval

Many CIA approaches have been proposed based on mining
software repositories and information retrieval techniques.
These include methods proposed by Canfora et al. [4], Hattori
et al. [5], Zimmermann et al. [6], Jashki et al. [7], Ceccarelli
et al. [8], Canfora et al. [9], Ahsan et al. [10], Gethers et
al. [11], and Kagdi et al. [12]. However, the impact analysis
based on history may not be comprehensive and complete
because the result naturally depends on the past activities and
past dependencies. Such results cannot cover the dependencies
introduced by the recent changes. Further, most of these
approaches support impact analysis at a single granularity

level. Some of the approaches such as methods proposed by
Hattori et al. [5] and Zimmermann et al. [6] cover more
than one granularity; however, their coverage is limited to
only three granularity levels. Finally, none of the above-
mentioned approaches support inter-granular CIA queries. In
contrast, Augur’s comprehensive static code analysis supports
six source code granularities and inter-granular CIA queries.

B. CIA through dependency analysis

Dependency analysis (static as well as dynamic) has been
used by many existing CIA approaches to predict the impact
set. Such approaches include ChAT [13], methods proposed by
Breech et al. [14], Briand et al. [15], Badri et al. [16], Acharya
et al. [17], Petrenko et al. [19], and Ajrnal et al. [18]. However,
most of the existing approaches support only one source code
granularity (such as class or method). A few approaches such
as the method proposed by Petrenko et al. [19] extend the
support for more than one granularity; however, to the best of
our knowledge, a comprehensive CIA solution that supports all
source code granularities during impact analysis does not exist.
Further, none of the existing approaches mentioned above
support inter-granular CIA queries. Finally, these dependency
based methods for CIA rely only on techniques such as data
and control dependency analysis which is often insufficient.
They do not exploit hidden dependencies arising from seman-
tic or environmental semantics as Augur does.

V. CONCLUSIONS

This paper introduced Augur, a more effective and com-
prehensive automated static code analysis approach for CIA.
Augur performs CIA at all source code granularities and sup-
ports inter-granular CIA queries. It supports capturing semantic
and environment dependencies in addition to data and control
dependencies. The Change Impact Query Language provides a
convenient and scalable mechanism to help developers execute
multiple change impact queries in a single batch. Augur has
been realized as Augur-Tool which is an extension for Visual
Studio IDE. A quantitative evaluations has been conducted on
the Augur-Tool to evaluate the accuracy of Augur. Evaluation
results indicate that Augur reports source code entities that are
impacted by a change with a higher-level of accuracy.

In the future, we plan to extend our current evaluation and
augment Augur-Tool by covering more hidden dependencies.

ACKNOWLEDGMENT

The authors would like to thank Amit Patil and Kishan
Kesavan, interns at Siemens CT DC AA who helped imple-
ment parts of the tool. We would also like to thank all the
participants from Siemens who participated in the evaluation
process of the tool and provided their valuable inputs.

REFERENCES

[1] R. Glass, “Frequently forgotten fundamental facts about software engi-
neering,” IEEE Software, vol. 18, no. 3, pp. 112–111, May 2001.

[2] G. Samarthyam, G. Suryanarayana, T. Sharma, and S. Gupta, “Midas: A
design quality assessment method for industrial software,” in Proceed-
ings of the 2013 International Conference on Software Engineering,
2013, pp. 911–920.

[3] S. Bohner, “Impact analysis in the software change process: a year 2000
perspective,” in Proceedings of International Conference on Software
Maintenance, Nov 1996, pp. 42–51.

[4] G. Canfora and L. Cerulo, “Fine grained indexing of software reposito-
ries to support impact analysis,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories, 2006, pp. 105–111.

[5] L. Hattori, G. dos Santos Jr, F. Cardoso, and M. Sampaio, “Mining
software repositories for software change impact analysis: A case study,”
in Proceedings of the 23rd Brazilian Symposium on Databases, 2008,
pp. 210–223.

[6] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of the 26th
International Conference on Software Engineering, 2004, pp. 563–572.

[7] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more efficient
static software change impact analysis method,” in Proceedings of
the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, 2008, pp. 84–90.

[8] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
2, 2010, pp. 163–166.

[9] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in 11th IEEE International Symposium on
Software Metrics, Sept 2005, pp. 9–29.

[10] S. N. Ahsan and F. Wotawa, “Impact analysis of scrs using single
and multi-label machine learning classification,” in Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2010, pp. 51:1–51:4.

[11] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proceedings of the 34th
International Conference on Software Engineering, 2012, pp. 430–440.

[12] H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 933–969, 2012.

[13] M. Lee, “Change impact analysis of object-oriented software,” Ph.D.
dissertation, George Mason University, 1998.

[14] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mecha-
nisms into impact analysis for increased precision,” in Proceedings of the
22Nd IEEE International Conference on Software Maintenance, 2006,
pp. 55–65.

[15] L. Briand, J. Wust, and H. Lounis, “Using coupling measurement for
impact analysis in object-oriented systems,” in Proceedings of IEEE
International Conference on Software Maintenance, 1999, pp. 475–482.

[16] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change
impact analysis: a control call graph based technique,” in 12th Asia-
Pacific Software Engineering Conference, Dec 2005, pp. 9 –18.

[17] M. Acharya and B. Robinson, “Practical andchange impact analysis
based on static program slicing for industrial software systems,” in Pro-
ceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 746–755.

[18] M. Ajrnal Chaumun, H. Kabaili, R. Keller, and F. Lustman, “A change
impact model for changeability assessment in object-oriented software
systems,” in Proceedings of the Third European Conference on Software
Maintenance and Reengineering, 1999, pp. 130–138.

[19] M. Petrenko and V. Rajlich, “Variable granularity for improving pre-
cision of impact analysis,” in IEEE 17th International Conference on
Program Comprehension, May 2009, pp. 10–19.

[20] Z. Yu and V. Rajlich, “Hidden dependencies in program comprehension
and change propagation,” in Proceedings of 9th International Workshop
on Program Comprehension, 2001, pp. 293–299.

[21] T. Sharma, “Identifying extract-method refactoring candidates automati-
cally,” in Proceedings of the Fifth Workshop on Refactoring Tools, 2012,
pp. 50–53.

[22] “Microsoft Visual Studio,” http://www.visualstudio.com/, [Online; ac-
cessed on 20-June-2016].

[23] “NRefactory,” https://github.com/icsharpcode/NRefactory, [Online; ac-
cessed on 20-June-2016].

[24] “GitExtensions - A shell extension as well as Visual Studio plug-in for
Git repository,” https://github.com/gitextensions/gitextensions, [Online;
last accessed on 20-June-2016].

[25] “VsVim - Vim emulator plug-in for Visual Studio,”
https://github.com/jaredpar/VsVim/, [Online; last accessed on 20-
June-2016].

